
International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 9

Journal Homepage: www.ijcst.org

V. Biksham
1
, S. Rajeshwar

2
, M. Naveen Kumar

3
 and B. Nehru

4

1,2,3
Arjun College of Technology and Sciences, India
4
Sri Venkateswara Engineering College, India

Abstract– Agile methodologies have become the mainstream of

software development due to their enriched practices. Some

commonly used practices include collaborative development,

meeting evolving requirements with working software, simple

design etc. These methods do not hold big upfront for early

estimation of size, cost and duration due to uncertainty in

requirements. It has been observed that Agile methodologies

mostly rely on an expert opinion and historical data of project for

estimation of cost, size and duration and also observed that these

methods do not consider the vital factors affecting the same of

project for estimation. The benefits of using Agile methodology

are: i) in the absence of historical data and experts, existing agile

estimation methods such as analogy, planning poker become

unpredictable. We found that one-third of the study respondents

use Agile methodologies to varying degrees, and most view it

favorably due to improved communication between team

members, quick releases and the increased flexibility of Agile

designs. ii) It defines some alternative processes for projects in

different situations. The main objective of this article is that it

gives the novel process model of the agile Software deployment

project. This paper helps to understand which steps are needed

for initially deploying an Agile methodology and continuously

improving the process.

Index Terms– Process Models, Agile Process, XP, Scrum and

Lean

I. INTRODUCTION

GILE Software Project Methodologies (ASP) [1] have

been gaining acceptance among main stream software

engineers since the late 1990s, Today agile projects are

established to varying degrees in the educational, business,

academic and software development professionals. We would

like to understand how ASP methodologies are used, what

kind of metrics and spread they have and what kind of success

and demerits occur in each of these process. We believe

strongly in describing empirical techniques to explore

engendered by these research topics. While there is much to be

learned from looking at the software measuring developer

productivity and failure proneness, we can learn about their

development artifacts, their practices and perceptions of

development, and how the two are communicate.

Software development process is complex field with

number of variables impacting the system. All software

systems cannot be built with mathematical or physical

certainty, so the systems are imperfect. Bridge building relies

on physical and mathematical laws. Software Engineering,

however, has no laws or clear certainties on which to build. As

a result, software development is almost always flawed or

sub-optimized. Also consider that the building blocks of

software projects is programming languages, database

platforms ,etc.), and the systems that act as building blocks

contain bugs and cannot be relied on with certainty. Because

the software development are inherently unstable and

unreliable, organizations developing software must realize

variables exist that are largely outside of management control.

It is therefore fair to say that software development is more

akin to new product research and development than it is to

assembly-line style manufacturing. Software development is

innovation, discovery, and artistry; each foray into a

development project presents new and difficult challenges that

cannot be overcome with one-size-fits-all, cookies cutter

solutions.

Software Industry is the ability to accurate estimate its

projects attributes, such as effort time cost is a priceless

benefit in a highly-competitive global market. In order to

attain useful estimate of these attributes, a set of software

metrics must be implemented by the Industry.

On the other hand, over the last organizations of all types

have replaced their traditional software development life

cycles with a new set of process called agile methodologies.

After almost a decade of the Agile Manifesto’s publication [2]

and much experimentation, agile methods have gained

acceptances as effective software development methodologies

and now widely used in many different types of industries. For

however, the problem of successfully implementing software

metrics is used in present.

If “working software is the primary measure of progress” as

stated in the Agile Manifesto [6] then agile organizations need

a method to measure completion of its products and determine

report progress.

Measurement is a primary method for managing software

life cycle works, which includes planning, controlling and

monitoring of software projects. This is especially true in agile

industries, where the activities are in “every day”. However

not all software metrics and standards developed over the

years for traditional lifecycle models can be straight forward

implemented by agile organizations without some adaptation.

They need to follow different process in implementing a

A

Agile Technology – A Novel Software Process

Framework Analysis

ISSN 2047-3338

V. Biksham et al. 10

successful metrics program, particularly if the industry is

small organization.

II. SOFTWARE PROCESS MODELS

 Software lifecycle has many process models. Here we

discuss about the few process models:

A. The Waterfall Model

Waterfall model was proposed by Walker Royce in 1970’s

as an alternative to Build and Fix software development

method in which code was written and debugged. System was

not formally designed and there was no way to check the

quality criteria.

Given below is a brief description of different phases of

Waterfall model.

• Feasibility Study: It explores system requirements to

determine project feasibility. Feasibility can be categorized

into:

 i). Economic feasibility

 ii). Technical feasibility

 iii). Operational feasibility

 iv). Schedule feasibility

 v). Legal and contractual feasibility

 vi). Political feasibility

Economic feasibility is also called cost-benefit analysis and

focuses on determining the project costs and benefits.

Tangible costs and benefits are the ones which can be easily

measured whereas intangible ones cannot be easily measured.

Examples of tangible benefits are reduced errors, improved

planning and control, reduced costs etc. Intangible benefits

include timely information, better resource control, improved

information processing, better assets utilization and many

more. Economic feasibility uses the concept of time-value of

money (TVM) which compares the present cash outlays to

future expected returns.

Technical feasibility focuses on organization’s ability to

construct the proposed system in terms of hardware, software,

operating environments, project size, complexity, experience

of the organization in handling the similar types of projects

and the risk analysis.

Operational feasibility deals with assessing the degree to

which a proposed system solves business problems.

Schedule feasibility ensures that the project will be

completed well in time.

Legal and contractual feasibility relates to issue like

intellectual property rights, copyright laws, labor laws and

different trade regulations.

Political feasibility finally evaluates how the key

stakeholders within the organization view the proposed system

(Jeffrey01).

B. Prototype

A prototype is a partially developed product. Robert T.

Futrell and Shafer in their book Quality Software Project

Management define prototyping as a process of developing

working replica of a system (Robert02). Most of the users do

Fig. 1. Model of Prototype Process

not exactly know what they want until they actually see the

product. Prototyping is used for developing a mock-up of

product and is used for obtaining user feedback in order to

refine it further as shown in Fig. 1.

In this process model, system is partially implemented before

or during analysis phase thus giving the end users an

opportunity to see the product early in the life cycle. The

process starts by communicates the customers and developing

the incomplete high level paper model. This document is used

to build the initial prototype supporting only the basic

functionality as desired by the customer. The prototype is then

demonstrated to the customer for his/her feedback. After

customer pinpoints the problems, prototype is further refined

to eliminate the problems. This process continues till the user

approves the rapid prototype and finds the working model to

be satisfactory.

Prototype is classified into two approaches can be followed:

 1). Rapid Throwaway Prototyping: This prototype is used

for part of the systems where the development team does not

have the understanding of the system. The quick and dirty

prototypes are built, verified with the customers and thrown

away. This process continues till a satisfactory prototype is

built. At this stage now the full scale development of the

product begins.

2). Evolutionary Prototyping: This approach is used when

there is some understanding of the requirements. The

prototypes thus built are not thrown away but evolved with

time. Fig shows the concept of prototyping has led to the

Rapid prototyping model and spiral model.

C. The Incremental Software Development Life Cycle Model

Software like all complex systems is bound to evolve due

changing business requirements or new requirements coming

up. The incremental software process development life cycle

model is one of the popular evolutionary software process

model used by industry. The model prioritizes the system

requirements and implements them in groups. Each new

release of the system enhances the functionality of the

previously released system thereby reducing the cost of the

project. Fig. 2 shows the working of the incremental model.

In the first release only the functionality A of the product is

offered to the customer. Functionality A consists of core

requirements which are critical to the success of the project. In

the second release functionality A plus functionality B is

offered and finally in release 3 functionality A, B as well as C

is offered. Therefore, with each release in addition to

incorporating new functionality in the system, functionality of

earlier releases may also be enhanced. For example if a text

International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 11

Fig. 2. Model of Incremental Process

editor is to be built, first version of the product will have basic

editing facilities. The next version of the product can be

released with enhanced editing facilities like formatting along

with new features like spell checking. The incremental model

is used when requirements are defined at the beginning of the

project but at the same time they are expected to evolve over

time. It can also be used for projects with development

schedules more than one year or if deliveries are to be made at

regular intervals.

D. The Spiral Model

Spiral model was proposed by Boehm in 1988 used for

large size projects. The radial coordinate in the diagram

represents the total costs incurred till date. Each loop of the

spiral represents one phase of the development.

The model is divided into four quadrants. Each spiral

represents the progress made in the project. In the first

quadrant, objectives, alternative means to develop product and

constraints imposed on the product are identified.

The next quadrant (right upper) deals with identification of

risks and strategies to resolve the risks. The third bottom right

quadrant represents the Waterfall model consisting of

activities like design, detailed design, coding and test. With

each phase after customer evaluates the product, requirements

are further refined and so is the product. It is to be noted that

number of loops through the quadrants are not fixed and vary

from project to project.

The process starts with identification and prioritization of

risks. A series of prototypes are developed for the risks

identified (highest risk is considered first). For each

Fig. 3. Model of Spiral process

development cycle of the Spiral model shown in Fig. 3.

Spiral model is also termed as process model generator or

meta model. For example if any project requirements are not

clear models like Prototyping or Incremental can be derived

from the spiral model.

E. The Rapid Application Development (RAD) Model

Rapid Application Development model was proposed by

IBM in 1980’s and software community by James Martin

through his book Rapid Application Development. Feature of

RAD model is increased involvement of the customer at all

stages of life cycle through development tools.

If the requirements of the software can be modularized in

such a way that each of them can be completed by different

teams in a fixed time. RAD model is quick turnaround time

from requirements analysis to the final delivered system. The

time frame for each delivery is normally 60 to 90 days called

time box which is achieved by using tools like Visual C++,

JAVA, XML, .NET etc.

The RAD model consists of following four phases:

Requirements Planning– focuses on collecting requirements

using elicitation techniques like brainstorming,

User Description– Requirements are detailed by taking

users feedback by building prototype using development tools.

Construction– The prototype is refined to build the product

and released to the customer.

Cutover– involves acceptance testing by the user and their

training.

The process therefore starts with building a rapid prototype

(a working model which is functionally equivalent to a subset

of final product) and is delivered to customer for use and his

feedback. Once the user/customer validates the rapid

prototype after using it, Requirement Specification Document

is derived and design is done to give final shape to the

product. After the product is installed, maintenance of the

product is continued by refining the requirements,

specification, design or coding phase.

Fig. 4. Model of Rapid Application Development Process

V. Biksham et al. 12

III. AGILE PROCESS AND PROJECT MANAGEMENT

XP and Scrum iterative approach process models are widely

used in the Agile Philosophy.

A. XP

Extreme programming(XP), concentrates on the development

rather than managerial aspects of software projects. XP was

designed so that organizations would be free to adopt all or

part of the methodology.

XP projects start with a release planning, followed by several

iterations, each of which concludes with user acceptance

testing. When the products has enough features to satisfy

users, the team terminates iteration and releases the software.

“User stories” to describe need of the software should fulfill.

User stories help the team to estimate time and resources

necessary to build the release and to define the user

accepteance tests. User representative part of the XP team can

add detail requirements as the software is being built. This

allows requirements to evolve as both users and developers

define what the product will look like.

In release plan, team breaks up the development tasks into

iterations. Release plan defines each iteration plan, which

drives the development for that iteration. At the end of

iteration, conduct the acceptance tests against the user stories.

If they find bugs, fixing the bugs becomes a step in the

iteration. If users decide that enough user stories have been

delivered, the team can choose to terminate the project before

all of the originally planned user stories have been

implemented.

Fig. 5 shows a simplified version of XP. Full XP includes

many steps in release planning, iteration, and acceptance.

1). Integrate Often: Development teams must integrate

changes into the development baseline at least once a day.

2). Project Velocity: Velocity is a measure of how much

work is getting done on the project. This important metric

drives release planning and schedule updates.

3). Pair Programming: All code for a production release is

created by two people working together at a single computer.

XP proposes that two coders working together will satisfy user

stories at the same rate as two coders working alone, but with

much higher quality.

Fig. 5. XP Process Model

4). User story: A user story describes problems to be solved

by the system being built. These stories must be written by the

user and should be about three sentences long. User stories do

not describe a solution, use technical language, or contain

traditional requirements-speak, such as “shall” statements.

Instead, a sample user story might go like this: Search for

customers. The user tells the application to search for

customers. The application asks the user to specify which

customers. After the user specifies the search criteria, the

application returns a list of customers meeting those criteria.

Because user stories are short and somewhat vague, XP will

only work if the customer representative is on hand to review

and approve user story implementations. This is one of the

main objections to the XP methodology, but also one of its

greatest strengths.

B. Scrum

Scrum is the term for a huddled mass of players engaged

with each other to get a job done. In software development,

the job is to put out a release. Scrum for software development

came out of the rapid prototyping community because

prototypes wanted a methodology that would support an

environment in which the requirements were not only

incomplete at the start, but also could change rapidly during

development.

Scrum project is a backlog of work to be done. This backlog

is populated during the planning phase of a release and defines

the scope of the release. After the team completes the project

scope and high-level designs, it divides the development

process into a series of short iterations called sprints. Each

sprint aims to implement a fixed number of backlog items.

Before each sprint, the team members identify the backlog

items for the sprint. At the end of a sprint, the team reviews

the sprint to articulate lessons learned and check progress.

During a sprint, the team has a daily meeting called a scrum.

Each team member describes the work to be done that day,

progress from the day before, and any blocks that must be

cleared. To keep the meetings short, the scrum is supposed to

be conducted with everyone in the same room—standing up

for the whole meeting. When enough of the backlog has been

implemented so that the end users believe the release is worth

putting into production, management closes development. The

team then performs integration testing, training, and

documentation as necessary for product release.

Scrum development process concentrates on managing

sprints. Before each sprint begins, the team plans the sprint,

identifying the backlog items and assigning teams to these

items. Teams develop, wrap, review, and adjust each of the

backlog items. During development, the team determines the

changes necessary to implement a backlog item. The team

then writes the code, tests it, and documents the changes.

During wrap, the team creates the executable necessary to

demonstrate the changes. In review, the team demonstrates the

new features, adds new backlog items, and assesses risk.

Finally, the team consolidates data from the review to update

the changes as necessary.

The entire team, including management, users and

interested parties demonstrates progress from the sprint and

International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 13

Fig. 6. SCRUM Process Model

reviews the backlog progress. The team reviews the remaining

backlog and adds, removes or reprioritizes items as necessary

to account for new information gathered during the sprint.

The concepts of the Scrum are the following:

1). Burn down char: This chart, updated every day, shows

the work remaining within the sprint. The burn down chart is

used both to track sprint progress and to decide when items

must be removed from the sprint backlog and deferred to the

next sprint.

2). Product Backlog: Product backlog is the complete list of

requirements including bugs, enhancement requests, and

usability and performance improvements that are not currently

in the product release.

3). Scrum Master: The Scrum Master is the person

responsible for managing the Scrum project. Sometimes it

refers to a person who has become certified as a Scrum Master

by taking Scrum Master training.

4). Sprint Backlog: Sprint backlog is the list of backlog

items assigned to a sprint, but not yet completed. In common

practice, no sprint backlog item should take more than two

days to complete. The sprint backlog helps the team predict

the level of effort required to complete a sprint.

C. Agile Lean Software Process Model

Basically the lean development (manufacturing) principles can

also be applied to the software development process to resolve

the issues and to improve the process and obtain good results.

1). Eliminate Waste: lean first step is to understand what

“value” is and what activities and resources are absolutely

necessary to create the value. Since no one wants to consider

what they do as waste, the job of determining what value is

and what adds value is something that needs to be done at a

fairly high level. The seven types of developing wastes are

illustrated in Table 1.

The seven wastes of software development, based on the

above framework, are illustrated below in Table 2.

The project teams should try to avoid these wastes, which

are very commonly produced during the development process.

2). Incorporate Feedback

Incorporate feedback does not mean to "Freeze the Specs."

On the contrary, product (and software project) specifications

change constantly. Lean discipline demands instantaneous

adaptation to changing market conditions, which

Table 1: Shows the seven wastes of manufacturing are also applicable to

software development

Table 2: Shows the seven wastes of software development

is best affected with a flexible architecture that readily

accommodates changes, monitoring techniques that detect

errors before they occur, and tests that are designed before

development begins.

The Incorporate feedback rule has been widely used to

justify the decision to develop a detailed system design before

code is written. The problem with this approach lies in the

assumption that customer requirements are static and can be

defined by a predetermined system. Because requirements do

change, and frequently throughout the life cycle of most

systems, they cannot be adequately fulfilled by a rigid design.

If we acknowledge the axiom that customers may not know

what they want at the beginning of development and that their

needs might change midstream, we must incorporate a method

of obtaining customer feedback during development. Instead,

most software development practices include a complex

"change control process" that discourages developers from

responding to user feedback. Far from ensuring a quality

result, these change-resistant processes actually get in the way

of "Doing It Right". Lean development employs two key

techniques that make the change easy.

Just as Lean Production builds tests into the manufacturing

process to detect when the process is broken, similarly Lean

development must “build tests” at various stages of the

development process. As development proceeds and changes

are made, the unit and regression tests are run. If the tests don't

pass, programming may be stopped until the problem is found

and corrected. A comprehensive testing capability is the best

way to accommodate change throughout the development

process.

V. Biksham et al. 14

The second technique that facilitates change is “refactoring”

(Improving the design without changing functionality), or

improving the design of existing software in a controlled and

rapid manner. With refactoring, initial designs can focus on

the basic issue at hand rather than speculate about other

features that may be needed in the future. Later in the process,

refactoring techniques can incorporate these additional

features, as they are required, making it easy to accommodate

the future if and when it becomes the present.

3). Empower those who add value: A basic principle of

Lean Production is to drive decisions down to the lowest

possible level, delegating decision-making tools and authority

to the people "on the floor." Often when software development

environments under-perform, the instinctive reaction is to

impose more rigid processes, specifying in greater detail how

people should do their jobs. Lean Production principles

suggest exactly the opposite approach. When there is problem

in manufacturing, a team of outside experts is not sent in to

document in more detail how the process should be run.

Instead, people on the manufacturing floor are given tools to

evaluate and improve their own areas. They work in

collaborative teams with the charter to improve their own

processes and the links to nearby processes for which they are

suppliers or customers. Their supervisors are trained in

methods of forming and encouraging work teams to solve their

own problems.

Lean software development similarly gives priority to

people and collaborating teams over paper work and

processes. It focuses on methods of forming and encouraging

teams to address and resolve their own problems, recognizing

that the people doing the work must determine the details.

Software development involves the handoff of information at

least once (from user to programmer) and often more than

once (from user to designer to programmer). One school of

thought holds that it's best to transfer all such information in

writing, but in fact, a great amount of tacit knowledge is lost

by handing off information on paper. A second school of

thought believes that it’s far more effective to have small

collaborating teams work across the boundaries of an

information handoff, minimizing paperwork and maximizing

communication.

4). Continuous Culture improvement: In many software

development projects today, excellence means the ability to

adapt to fast-moving, rapidly changing environments. Process-

intensive approaches such as the higher levels of Software

Engineering Institute's (SEI) Capability Maturity Model

(CMM) may lack the flexibility to respond rapidly to changes

and more over these process-documentation programs indicate

excellence only when the documented process excels in the

context of its use. So these accreditations have their own

advantages and disadvantages. Iterative development can

effectively employ the Plan-Do-Check-Act method. During

the first iteration, the handoff from design to programming or

programming to testing may be a bit rough. It's ok if the first

iteration provides a learning experience for the project team,

because the subsequent iterations will allow the team to

improve its process.

In an iterative project environment becomes an operational

environment, because processes are repeated and Deming's

techniques of process improvement can be applied from one

iteration to the next. A simple Plan-do-check-act principle can

be followed:

• Plan: Choose a problem. Analyze it to find a probable

cause.

• Do: Run an experiment to investigate the probable cause.

• Check: Analyze the data from the experiment to validate

the cause.

• Act: Refine and standardize based on the results.

Product/Solution improvement is also enhanced in the

iterative process, particularly if refactoring is used. In fact,

refactoring provides a tremendous vehicle to apply the

principle of continuous improvement to software

development. However, need an improvement model that can

span more than a single project. Must improve future project

performance by learning from existing ones. Here again, Lean

production can point the way.

5). Customer Requirements: Philip Crosby defines quality

as "conformance & Performance to requirements." The 1994

Standish Group study "Charting the Seas of Information

Technology—Chaos" stated that that the most common cause

of failed projects is missing, incomplete or incorrect

requirements. The software development world has responded

to this risk by amplifying the practice of gathering detailed

user requirements and getting user signoff prior to proceeding

with system design. However, this approach to defining user

requirements is deeply flawed. As discussed above in the

incorporate feedback principle the process should have the

provision for the customer to make changes. The Software

compliance and User (Customer) acceptance testing must be

done with reference to the customer requirements.

6). Demand: Lean Software development means rapid, Just-

in-Time delivery of value. In manufacturing, the key to

achieving rapid delivery is to manufacture in small batches

pulled by a customer order. Similarly in software

development, the key to rapid delivery is to divide the problem

into small batches (increments) pulled by a customer test. The

single most effective mechanism for implementing lean

production is adopting Just-in-Time, Pull from demand flow.

Similarly, the single most effective mechanism for

implementing lean development is delivering increments of

real business value in short time-boxes.

7). Flow: In lean software development, the idea is to

maximize the flow of information and delivered value. In lean

production, Maximizing flow does not mean automation.

Instead it means limiting what has to be transferred, and

transferring that as few times as possible over the shortest

distance with the widest communication bandwidth. Similarly

in software development the idea is to eliminate as many

documents and handoffs as possible. In the lean software

development emphasis is to pair a skilled development team

with a skilled customer team and to give them the

responsibility and authority to develop the system in small,

rapid increments, driven by the customer priority and

feedback.

8). Project Scope: Project managers have been trained to

focus on managing scope, just as in manufacturing production

managers concentrated on maximizing machine productivity.

International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 15

However, Lean software development is fundamentally driven

by time and feedback. In the same way that localized

productivity optimization weakens the overall manufacturing

process, so focusing on managing scope impairs project

development.

Holding the scope to exactly what was envisioned at the

beginning of a project offers little value to the user whose

world is changing. In fact, it imparts anxiety and paralyzes

decision-making, ensuring only that the final system will be

outdated by the time it's delivered. Managing to a scope that's

no longer valid wastes time and space, necessitating inefficient

issue lists, extensive trade-off negotiations and multiple

system fixes. However, as long as limiting a project to its

original scope is a key project management goal; local

optimization will flourish at the expense of the project's

overall quality.

9). Quality Supply: High quality and creativity of the supply

chain partnerships far outweighed the putative benefits of

competitive bidding and rapid supplier turnover. Partner

companies helped each other improve product designs and

product flows, linking systems to allow just-in-time movement

of goods across several suppliers with little or no paperwork.

IV. COMPARATIVE STUDY

Agile methods are on the adaptive side of this continuum.

Adaptive methods focus on adapting quickly to changing

realities. When the needs of a project change, an adaptive

team changes as well. An adaptive team will have difficulty

describing exactly what will happen in the future. The further

away a date is, the vaguer an adaptive method will be about

what will happen on that date. An adaptive team cannot report

exactly what tasks are being done in the next week, but only

which features are planned for next month. When asked about

a release six months from now, an adaptive team may only be

able to report the mission statement for the release, or a

statement of expected value and cost.

Predictive methods, in contrast, focus on planning the future

in detail. A predictive team can report exactly what features

and tasks are planned for the entire length of the development

process. Predictive teams have some problems in changing

direction. The plan is typically optimized for the original

destination and changing direction can require completed

work to be started over. Predictive teams will often institute a

change of control board to ensure that only the most valuable

changes are considered.

 Agile project management has many process models

compare to other process model. Agile scrum, Xp, are the

software development lifecycle but novel lean development

process is the concept of manufacturing process which is

efficient in products, the same process for software

development is most effective in projects.

V. CONCLUSIONS

Agile software development stresses rapid iterations, small

and frequent releases, and evolving requirements facilitated by

direct user involvement in the development process. Agile

application lifecycle management tools provide a framework

to visualize scope, orchestrate mundane and repetitive

development tasks, and enforce process. Unlike agile-specific

products offered by agile-only vendors, and can be applied

equally well to agile as well as more traditional serial

development processes, so they can support all the

development activities within an enterprise. In this article

proposes the development of novel lean development process,

lean steps taken from the manufacturing products and

comparing the agile methods, scrum xp with lean. These vital

factors include mainly; project domain, configuration,

performance, complex processing, data transaction, operation

ease, multiple sites and security. Future work of this article is

extended with the requirements and metrics of projects, which

we need to implement in the lean software development

process.

REFERNCES

[1] Mufazzal Badani, “Mapping Agile development practices to

Traditional PMBOK”, June, 4th 2001,

www.pmiissig.org/pds/DOCS/BadaniBioandAbstractMapping

AgileDevelopmentPractices.doc, accessed 29 Feb 2007.

[2] David F. Rico, “Agile Methods and the Links to Customer

Satisfaction and Firm Performance”, September, 2006. P:11.

[3] Orlicky, “The Successful Computer System: Its Planning,

Development, and Management in a Business Enterprise”,

McGraw-Hill, New York, 1969.

[4] Basili and Turner, “Iterative enhancement: A practical

technique for software development. IEEE Transactions on

Software Engineering “,1975, Pages 390-396.

[5] Zarraga and Bonache, “The impact of team atmosphere on

knowledge outcomes in self managed teams “. Organization

Studies, 26(5), Pages 661-681, 2005.

[6] Babchuk, N., & Goode, W. J. (1951). “Work incentives in a

self determined group“. American sociological Review, 16(5),

Pages 679-687, 1951.

[7] Ahituv, Hadass, & Neumann, “A flexible approach to

information system development “, MIS Quarterly, 8(2), Pages

69-78 ,1984.

[8] Sanjiv Augustine and Susan Woodcock, “Agile Project

Management Pace Systems”, CC Pace, www.ccpace.com, par.

2, page 5- 2003 , Accessed 12 Dec 2006. Published in PM

World Today - May 2007 (Vol. IX, Issue V) PM.

[9] Ken Schwaber, Mike Beedle, “Agile Software Development

with Scrum”, Prentice Hall, 2001, pp. 100-101.

[10] In fact, it is debatable whether Quality is really an adjustable

factor. As professionals, software developers find it very

objectionable when asked to skimp on quality. Surgeons or

lawyers would be sued for malpractice, and for the same

ethical implications software developers resent this charge.

Software developers should always aim for high quality

software, period.

[11] Kent Beck, “Extreme Programming Explained: Embrace

Change”, Addison-Wesley, 2000, pp. 15-19.

[12] Black. S. E. Boca., P. P.; Bowen. J.P.; Gorman, J.;

Hinchey. M.G. (September 2009). "Formal versus agile:

Survival of the fittest". IEEE Computer 49 (9): 39–45.

[13] Boehm. B.; R. Turner (2004 Balancing Agility and Discipline:

A Guide for the Perplexed. Boston, MA: Addison-Wesley.

ISBN 0-321-18612-5. Appendix A, pages 165-194.

[14] Ken Schwaber, Mike Beedle, “Agile Software Development

with Scrum”, Prentice Hall, 2001.

V. Biksham et al. 16

 V. Biksham, Asst. Prof. at Arjun

College of Tech & Sciences, M.Tech

(SE) from Aurora Technological &

Research Institute (JNTUH), B.Tech

(CSE) from SRTIST (JNTUH). His

areas of interest are Computer

Networks, Software Engineering and

Information Security.

 S. Rajeshwar, Asst. Prof. at Arjun

College of Tech & Sciences, M.Tech

(CSE) from Nagarjuna University,

Guntur B.Tech (CSE) from SRTIST

(JNTUH). His areas of interest are

Compiler Design, Database

Management Systems, Automata

Theory, and Software Engineering.

 M. Naveen Kumar, Asst. Prof. at

Arjun College of Tech & Sciences,

M.Tech from HITS (JNTUH), B.Tech

from Aditya Engineering college

(JNTU). His areas of interest are

Computer Networks, Operating System,

Information Security and Software

Engineering.

 B. Nehru, Asst. Prof. at Sri

Venkateswara Engineering College,

M.Tech from Aurora Technological &

Research Institute (JNTUH), B.E from

Vasavi Engg College (OU). His areas

of interest are Advanced Data

Structures, Object Oriented

Programming and Software

Engineering.

