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Abstract– Facility location problem have several application in 

telecommunication, transportation, distribution etc. One of the 

most well-known facility location problems is the p-median 

problem. We use genetic algorithm to solve the capacitated         

p-median problem. In this paper we solve a real problem and 

give their computational results. 

 

Index Terms– Optimizing, Solution, Algorithm and Problem 

I.   INTRODUCTION 

ACILITY-location problems have several applications in 

telecommunications, industrial transportation and 

distribution, etc. One of the most well-known facility 

location problems is the p-median problem. This problem 

consists of locating p facilities in a given space (e.g. Euclidean 

space) which satisfy n demand points in such a way that the 

total sum of distances between each demand point and its 

nearest facility is minimized. In the no capacitated p-median 

problem, one considers that each facility candidate to median 

can satisfy an unlimited number of demand points.  

By contrast, in the capacitated p-median problem each 

candidate facility has a fixed capacity, i.e. a maximum number 

of demand points that it can satisfy. The p-median problem is 

NP-hard (Kariv and Hakimi, 1979). Therefore, even heuristic 

methods specialized in solving this problem require a 

considerable computational effort. 

II.   THE P-MEDIAN PROBLEM 

Informally, the goal of the p-median problem is to 

determine p facilities in a predefined set with n (n > p) 

candidate facilities in order to satisfy a set of demands, so that 

the total sum of distances between each demand point and its 

nearest facility is minimized. The p facilities composing a 

solution for the problem are called medians.  

Formally, assuming all vertexes of a graph are potential 

medians, the p-median problem can be defined as follows. Let 

G = (V, A) an undirected graph where V are the vertexes and A 

are the edges. The goal is to find a set of vertexes Vp V 

(median set) with cardinality p, such that the sum of the 

distance between each remaining vertex in {V – Vp} (demand 

set) and its nearest vertex in Vp be minimized. 

We present below a formulation of the p-median problem in 

terms of Integer Programming proposed by Revelle and Swain 

in 1970. This formulation allows that each vertex be 

considered, at the same time, as demand and facility (potential 

median), but in many cases (including our real world 

application) demand and facilities belong to disjoint sets. 
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Where, 

n = total number of vertexes in the graph 

ai = demand of vertex j 

dij = distance from vertex i to vertex j 

p = number of facilities used as medians 

 

 
 

 
 

The objective function (2.1) minimizes the sum of the 

(weighted) distances between the demand vertexes and the 

median set. The constraint set (2.2) guarantees that all demand 

vertexes are assigned to exactly one median. The constraint set 

(2.3) forbids that a demand vertex be assigned to a facility that 

was not selected as a median. 

The total number of median vertexes is defined by (2.4) as 

equal to p. Constraint (2.5) guarantees that the values of the 

decision variables x and y are binary (0 or 1). 

Assuming all vertexes of a graph are potential medians, the   

p-median problem can be formally defined as follows. Let     
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G = (V, A) an undirected graph where V are the vertexes and A 

are the edges. The goal is to find a set of vertexes Vp V 

(median set) with cardinality p, such that: (a) the sum of the 

distance between each remaining vertex in {V – Vp} (demand 

set) and its nearest vertex in Vp be minimized; and (b) all 

demand points are satisfied without violating the capacity 

restrictions of the median facilities.  

By comparison with the p-median problem, the capacitated   

p-median problem has the following additional constraints:  (i) 

Each facility can satisfy only a limited number of demands 

(capacity restrictions), and (ii) All demand points must be 

satisfied by respecting the capacities of the facilities selected 

as medians. 

III.   A REAL-WORLD APPLICATION 

Suppose we have an exam for the B.Tech students. The goal 

was to assign 19710 candidate students to facilities as close as 

possible to their corresponding homes. In order to obtain the 

distance between each candidate student’s home and each 

facility, all the addresses in question have been precisely 

located in a digitized map of the city. 

It was previously determined, for operational and economic 

reasons that an algorithm should select 26 facilities to satisfy 

all 19710 candidate students, among a set of 43 candidate 

facilities. We cast this problem as a capacitated p-median 

problem, as follows: 

1.    The set of 43 facilities (potential exam locations) is the 

set V (|V| = 43) of all facilities candidate to median 

(actual exam locations). 

2.   Let Vp V (|Vp| = 26) be the set of the 26 selected 

exam locations. 

3.    Each of the 43 potential exam locations can satisfy only 

a limited number of candidate students. 

4.  The goal is to select a set Vp V that minimizes the 

total sum of distances between each candidate student’s 

home and its nearest exam location (median). 

IV.   GENETIC ALGORITHM FOR CAP-P-MED-GA 

This section describes our proposed GA for the capacitated   

p-median problem, Cap-p-Med-GA. 

A. Individual Representation 

Each individual (chromosome) has exactly p genes, where p 

is the number of medians, and the allele of each gene 

represents the index (a unique id number) of a facility selected 

as median. For instance, consider a problem with 15 facilities 

(potential medians) represented by the indexes 1, 2,..., 15. 

Suppose one wants to select 5 medians. 

In our GA, the individual [2, 7, 5, 15, 10] represents a 

candidate solution for the problem where facilities 2, 5, 7, 10 

and 15 have been selected as medians. In Cap-p-Med-GA the 

genome is interpreted as a set of facility indexes, in the 

mathematical sense of set - i.e. there are no duplicated indexes 

and there is no ordering among the indexes. 

 

 

B. Fitness Evaluation 

In essence, the fitness of an individual is given by the value 

of the objective function for the solution represented by the 

individual - as measured by formula (2.1). However, there is a 

caution in the computation of the fitness of an individual. Note 

that Capacitated-p-Median-GA is used only to optimize the 

choice of the 26 medians, out of the 43 facilities. However, the 

computation of formula (2.1) requires that each of the 19710 

candidate students be assigned to exactly one of the selected 

medians (i.e. the facility where the student will take the 

admission exam). This assignment is done by a procedure that 

is used by Cap-p-Med-GA as a black box.  

Here we just mention the basic idea of this procedure. Once 

the 26 medians are selected, this procedure tries to assign each 

candidate student to the median (exam location) that is the 

nearest one to its home. The problem is that, since each 

median has a fixed capacity, some candidate students will 

have to be assigned to the second (or third, fourth ...) nearest 

median to their homes. Suppose there is an assignment 

conflict -e.g. there is just one position in one median, and that 

median is the nearest one for two candidate students.  

In this case the student-assignment procedure prefers to 

assign to that median the student that would be most intolerant 

if she was assigned to its second nearest median. A student is 

“intolerant” to the extent of the difference between two 

distances, namely the distance between her home and her 

nearest median and the distance between her home and her 

second nearest median. Once the student-assignment 

procedure is complete, the fitness of an individual can be 

computed by formula (2.1). 

• Selection: The first step consists in selecting individuals 

for reproduction. This selection is done randomly with a 

probability depending on the relative fitness of the individuals 

so that best ones are often chosen for reproduction than poor 

ones. Typically we can distinguish two types of selection 

scheme, proportionate selection and ordinal-based selection. 

Proportionate-based selection picks out individuals based 

upon their fitness values relative to the fitness of the other 

individuals in the Population. Ordinal-based selection schemes 

select individuals not upon their raw fitness, but upon their 

rank within the population. 

• Crossover: crossover is the process of taking two parent 

solutions and producing from them a child. After the selection 

(reproduction) process, the population is enriched with better 

individuals. Reproduction makes clones of good strings but 

does not create new ones. Crossover operator is applied to the 

mating pool with the hope that it creates a better offspring. 

Crossover is a recombination operator that proceeds in three 

steps: 

i).   The reproduction operator selects at random a pair of two 

individual strings for the mating. 

ii).   A cross site is selected at random along the string length. 

iii).  Finally, the position values are swapped between the two 

strings following the cross site. 
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Fig. 1. Stochastic universal sampling 

 

As a preprocessing step for the possible application of 

crossover, Cap-p-Med-GA computes two exchange vectors, 

one for each parent, as follows. For each gene of parent 1, 

Cap-p-Med-GA checks whether the allele (facility index) of 

that gene is also present (in any position) at the genome of 

parent 2. If not, that facility index is copied to the exchange 

vector of parent 1.  

This means that facility index may be transferred to parent 2 

as a result of crossover, since this transfer would not create 

any duplicate facility indexes in parent 2’s genotype. The 

same procedure is performed for each facility index in the 

genotype of parent 2. For instance, let the two parents be the 

facility-index vectors [1, 2, 3, 4, 5] and [2, 5, 9, 10, 12]. Their 

respective exchange vectors are: vp1 = [1, 3, 4] and vp2 = [9, 

10, 12].  

Once the facility indexes that can be exchanged have been 

identified, the crossover operator can be applied, as follows: 

 

• Evaluation: Then the fitness of the new chromosomes is 

evaluated. 

• Replacement: During the last step, individuals from the 

old population are killed and replaced by the new ones. 

The algorithms stopped when the population converges 

toward the optimal solution. 

The basic genetic algorithm is as follows: 

• [start] Genetic random population of n chromosomes 

(suitable solutions for the problem) 

•  [Fitness] Evaluate the fitness f(x) of each chromosome x in 

the population 

• [New population] Create a new population by repeating 

following steps until the New population is complete 

 - [selection] Select two parent chromosomes from a 

population according to their fitness (the better fitness, 

the bigger chance to get selected) 

 -  [crossover] With a crossover probability, cross over the 

parents to form new offspring (children), If no crossover 

was performed, offspring is the exact copy of parents 

 - [Mutation] With a mutation probability, mutate new 

offspring at each locus (position in chromosome) 

 -  [Accepting] Place new offspring in the new population  

•  [Replace] Use new generated population for a further sum 

of the algorithm 

•  [Test] If the end condition is satisfied, stop, and return the 

best solution in current population 

• [Loop] Go to step 2 for fitness evaluation 

V.   COMPUTATIONAL RESULTS 

As mentioned earlier, the problem being solved consists of 

selecting 26 medians out of 43 facilities. Therefore, there are 
26
C43 = 421,171,648,758 (roughly 421 billion) candidate 

solutions (Table 1). 

Table 1:  Computational Results 

 Using GA 

No. of eval. 

solutions 

24,300 

Run time 01:43:21 

Avg distance 2.40Km 

Total distance 47,313Km 

Percent near facility 79% 

 

VI.   CONCLUSIONS AND FUTURE WORK 

We have proposed a GA for the capacitated p-median 

problem, and have applied it to a real-world problem with a 

quite large search space, containing roughly 421 billion         

(4, 21 x 1011) candidate solutions. Our GA uses an individual 

representation and genetic operators developed specifically for 

the p-median problem. Capacitated p-median problem 

(CPMP) is an important deviation of facility location problem 

in which p capacitated medians are economically selected to 

serve a set of demand vertices so that the total assigned 

demand to each of the candidate medians must not exceed its 

capacity.  
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