
International Journal of Computer Science and Telecommunications [Volume 2, Issue 3, June 2011] 1

Journal Homepage: www.ijcst.org

1
Dr. S. M. Afroz,

2
N. Elezabeth Rani and

3
N. Indira Priyadarshini

1,2
Nizam Institute of Engineering and Technology, India

3
GuruNank Engineering College, India

Abstract– Web application script crashes and malformed

dynamically generated web pages are common errors and they

seriously impact the usability of Web applications. Static analysis

tools for webpage validation cannot handle the dynamically

generated pages that are ubiquitous on today’s Internet. We

present a dynamic test generation technique for the domain of

dynamic Web application, utilizes both combined concrete and

symbolic execution. The technique generates tests automatically,

runs the tests capturing logical constraints on inputs, and

minimizes the conditions on the inputs to failing tests so that the

resulting bug reports are small and useful in finding and fixing

the underlying faults. We are implementing the PHP

Programming language test using Apollo. This paper presents the

survey on static and dynamic testing analysis, also compare the

dynamic test generation of DART and Apollo Software web

Tools. Our analysis present the Apollo is effective than the

existing tools.

 Index Terms– Web Application, Testing Tools, Intrusion and

Anomaly

I. INTRODUCTION

EB applications are one of the increasing growths of

classes of software systems in use today. These

applications support a wide range of activities

including business functions such as product sale and

distribution, scientific activities such as information sharing

and proposal review, and medical activities such as expert-

system-based diagnoses. It is important that Web applications

be dependable, but recent reports indicate that in practice they

often are not. For example, one study of Web application

integrity found that 29 of 40 leading e-commerce sites [3] and

28 of 41 government sites [2] exhibited some type of failure

when exercised by a “first-time user”.

Several tools for validating Web applications have been

created, but most of these focus on protocol conformance, load

testing, link checking, and various static analyses Such tools

address problems of availability, navigability, and

performance faced initially by deployed Web applications, do

not directly assist in detecting the failures in meeting

functional requirements that have been found to dominate in

mature deployed Web applications [2]. To date, tools that do

support functional validation do so only by supporting capture

replay: the recording of tester input sequences for use in

regression testing. Recently, a few more formal approaches for

testing the functional requirements of Web applications have

been proposed [8], [1], [5]. In essence, these are “white-box”

testing approaches, building system models from inspection of

code and identifying test requirements from those models.

Early studies have shown that these approaches can

facilitate the construction of “adequate” test suites; however,

the approaches can also be costly due to the human effort

required to generate test cases that meet the identified test

requirements. The search for a generalizable and practical

approach to the functional testing of Web applications is

complicated by several characteristics of those applications.

First, Web application usage can change rapidly.

For example, a Web site can be caught by a search engine

and suddenly receives hundreds of thousands of hits per day

rather than just dozens [4]. In such cases, test suites designed

with particular usage profiles in mind may be inappropriate.

Second, Web applications typically undergo maintenance at a

faster rate than other systems; this maintenance often consists

of small incremental changes [7]. To accommodate such

changes cost-effectively, testing approaches should be

automatable and test suites should be adaptable. Finally, Web

applications typically involve complex, multitiered,

heterogeneous architectures including Web, application, and

database servers, and clients acting as interpreters.

Testing approaches must be able to handle the various

diverse components in these architectures. The foregoing

characteristics are not unique to Web applications, but they are

particularly prevalent, and their effects on testing are

particularly acute in this paradigm. Unfortunately, although

the recently proposed techniques [6], [1], [5] partially address

the third characteristic, the first two characteristics have not

yet been addressed.

Fig. 1. Shows the seuentail diagram for web application

W

Web Application– A Study on Comparing Software

Testing Tools

 ISSN 2047-3338

Dr. S. M. Afroz et al. 2

The goal is to find the failures in web applications in ways:

Execution failures that are manifested as crashes or

warnings during program execution and HTML failures that

occur when the application generates malformed HTML.

Execution failures may occur, for example, when a web

application calls an undefined function or reads a nonexistent

file. In such cases, the HTML output contains an error

message and execution of the application may be halted,

depending on the severity of the failure. HTML failures occur

when output is generated that is not syntactically well-formed

HTML (e.g., when an opening tag is not accompanied by a

matching closing tag). HTML failures are generally not as

important as execution failures because Web browsers are

designed to tolerate some degree of malformedness in HTML,

but they are undesirable for several reasons. First and most

serious is that browsers’ attempts to compensate for

malformed web pages may lead to crashes and security

vulnerabilities. Second, standard HTML renders faster. Third,

malformed HTML is less portable across browsers.

2. INTRODUCTION TO WEB APPLICATION

A web application is an application that uses a web browser

as a client. The application can be as simple as a message

board or a guest sign-in book on a website, or as complex as a

word processor or a spreadsheet. A client-server environment

is one in which multiple computers share information such as

entering information into a database. The 'client' is the

application used to enter the information (web browser like

Google, MSN) and the 'server' is the application used to store

the information.

A. Benefits of a Web Application

A web application relieves the developer of the

responsibility of building a client for a specific type of

computer or a specific operating system. Since the client runs

in a web browser, the user could be using an IBM-compatible

or a Mac. They can be running Windows XP or Windows

Vista. They can even be using Internet Explorer or Firefox,

though some applications require a specific web browser. Web

application uses a combination of server-side script (ASP,

PHP, etc) and client-side script (HTML, JAVA script, etc) to

develop the application. Web Applications have been around

since before the web gained mainstream popularity. For

example, Larry Wall developed Perl, a popular server-side

scripting language, in 1987. That was seven years before the

Internet really started gaining popularity outside of academic

and technology circles.

Web applications are preferred over traditional applications

for two reasons:

i). Web Applications are more accessible: The HTTP

protocol used in web applications is a standard protocol that

can travel across corporate firewalls. The only client software

a user nee is a web browser. Also, Web Applications are

available on many platforms. Web browsers are packaged with

most operating systems these days.

ii). Web Applications have a lower maintenance and

deployment cost: Since Web applications are running in web

browser, they do not depend on installing client software on

each user’s computer. Web applications can be maintained by

modifying code that resides on a server. This reduces the time

and the cost of upgrade and deployment of web applications

compared to tradinal client/server applications.

B. Web Application Architecture Views

Four views of a Web Application Architecture proposed by

Kruchten: Logical, Process, Physical, and Development view.

Each view captures specific decisions and all views must be

examined to gain a good understanding of the whole

applications. To account additional requirements such as

security and requirement, additional views can be added to the

Web Application Architecture View.

• The Logical View: The Logical view provides a high level

abstraction of the system based on the domain of the problem.

The application is represented by different components and

the interaction between them. At the architectural level, Web

Applications can be organized as 2-tiers or as 3 tiers (as shown

in Fig. 2).

Presentation Logic tier shows the interaction between the

components responsible for the generation of the User

Interface. Components in this tier only interact with

components in the Business Logic tier.

Business Logic tier contains all the knowledge required to

modify the data components that are contained in the Database

tier.

Database tier contains all the data components that are used

to provide persistent storage for the application data.

The 3-tired architecture provides a good separation of

concerns. In a 2-tired architecture both business logic and data

access code are mixed. The advantage of the 3-tired

architecture is the encapsulation of concerns. The database

system used for the implementation can easily be changed

without affecting the Business Logic (as would be the case for

a 2-tier architecture).

• The Development View: The Development view focuses

on the mapping of the Logical view conceptual components to

the actual implementation artifacts. It presents that actual

software module organization in the development

environment. The Development View for Web Applications

must highlight additional details such as:

Fig. 2. High level logical view of web application

International Journal of Computer Science and Telecommunications [Volume 2, Issue 3, June 2011] 3

– The link structure of the application pages

– User’s session management techniques

– Application page generation technology

Many web pages are linked together to form a Web

Application. To avoid death links all links have to be checked

regularly. Web Applications use the HTTP protocol as their

communication medium. Since the HTTP protocol is a

stateless protocol, the Web Applications have to use

techniques such as Cookies or hidden fields in a web page to

store the state for a particular session.

Application pages are a mixture of HTML tags and control

code. The control code is used to personalize web pages and

the HTML tags are used to format the output of the page.

When an application page is requested, a web server is

preprocessing all data from various resources and generates

the final HTML page. The developer has two options for

developing application pages: First, he can use Code based

application pages. With this technique HTML pages are

generated fully by executable programs. Some examples of

this technology are: CGI and Java-Servlet. Second, the

developer can use templated-based application pages.

These are written with the HTML Language and extended

with tags to embed control code. Examples of this technology

are PHP and Java Server Pages (JSP).

• The Physical View: The Physical view presents the

mappings of the components in the Development view to the

components in the environment. Web applications have a rich

environment, which contains the following components:

– Web browsers

– Web servers

– Application servers

– Databases

– Distributes objects (i.e. Enterprise Java Beans)

The user of a Web application uses the web browser as the

interface to get access to the Web applications functionality.

The browser transmits the user’s action to the web server,

sending the requests using the HTTP protocol. The web server

determines if the request can be fulfilled directly. Otherwise

the applications server must be invoked. As can be seen from

figure, if the user wants to retrieve some data from the

database, the application server must be invoked. Finally, the

web server with the possible returns from the application

server generates the HTML pages that is returned to the user.

Fig. 3. Physical view of a web application

• The Process View: The Process view presents the

concurrency and distribution of process in the application.

III. INTRUSION DETECTION SYSTEM

Intrusion detection systems (IDS) process large amounts of

monitoring data. As an example, a host-based IDS examines

log files on a computer (or host) in order to detect suspicious

activities. Network-based IDS, on the other hand, searches

network monitoring data for harmful packets or packet flows.

• What Is Anomaly: Anomaly detection refers to detecting

patterns in a given data set that do not conform to an

established normal behavior. The patterns thus detected are

called anomalies and translate to critical and actionable

information in several application domains. Anomalies are

also referred to as outlier, surprise deviation etc.

Most anomaly detection algorithms require a set of purely

normal data to train the model and they implicitly assume that

anomalies can be treated as patterns not observed before.

Since an outlier may be defined as a data point which is very

different from the rest of the data, based on some measure, we

employ several detection schemes in order to see how

efficiently these schemes may deal with the problem of

anomaly detection. The statistics community has studied the

concept of outliers quite extensively. In these techniques, the

data points are modeled using a stochastic distribution and

points are determined to be outliers depending upon their

relationship with this model. However with increasing

dimensionality, it becomes increasingly difficult and

inaccurate to estimate the multidimensional distributions of

the data points. However recent outlier detection algorithms

that we utilize in this study are based on computing the full

dimensional distances of the points from one another as well

as on computing the densities of local neighborhoods.

The deviation measure is our extension of the traditional

method of discrepancy detection. As in discrepancy detection,

comparisons are made between predicted and actual sensor

values, and differences are interpreted to be indications of

anomalies. This raw discrepancy is entered into a

normalization process identical to that used for the value

change score, and it is this representation of relative

discrepancy which is reported. The deviation score for a

sensor is minimum if there is no discrepancy and maximum if

the discrepancy between predicted and actual is the greatest

seen to date on that sensor. Deviation requires that a

simulation be available in any form for generating sensor

value predictions. However the remaining sensitivity and

cascading alarms measures require the ability to simulate and

reason with a causal model of the system being monitored.

An appealing way to assess whether current behavior is

anomalous or not is via comparison to past behavior. This is

the essence of the surprise measure. It is designed to highlight

a sensor which behaves other than it has historically.

Specifically, surprise uses the historical frequency distribution

for the sensor in two ways: It is those sensors and to examine

the relative likelihoods of different values of the sensor.

It is those sensors which display unlikely values when other

values of the sensor are more likely which get a high surprise

scores. Surprise is not high if the only reason a sensor’s value

Dr. S. M. Afroz et al. 4

Fig. 4. Software testing techniques

is unlikely is that there are many possible values for the

sensor, all equally unlikely.

IV. SOFTWARE TESTING TECHNIQUES

Software testing is a process used to measure the quality of

software developed and also the process of uncovering errors

in a program and makes it a feasible task. It is useful process

of executing program with the intent of finding bugs. Fig. 4

represents the some of the most prevalent techniques of

software testing which are classified by purpose [16].

A. Correctness Testing

Essential purpose of testing is correctness which is also the

minimum requirement of software. Correctness testing tells

the functionality of the system from the wrong one for which

it will need some type of Oracle. Either a white box point of

view or black box point of view can be taken in testing

software as a tester may or may not know the inside detail of

the software module under test. For e.g. Data flow, Control

flow etc.

B. White Box Testing

White box testing based on an analysis of internal structure

of a piece of software. White box testing is the process of

giving the input to the system and checking how the system

processes that input to generate the required output. It is

necessary for a tester to have the full knowledge of the source

code. White box testing is applicable at integration, unit and

system levels of the software testing process. In white box

(Fig. 5) testing one can be sure that all parts through the test

objects are properly executed [15], [17].

C. Black box testing

It is an integral part of ‘Correctness testing’ but its ideas are

not limited to correctness testing only. Correctness testing is a

method which is classified by purpose in software testing.

Black box testing is based on the analysis of the

Fig. 5. White-box testing

Fig. 6. Black-box testing

specifications of a piece of software without reference to its

internal working. The goal is to test how well the component

conforms to the published requirement for the component.

Black box testing have little or no regard to the internal logical

structure of the system, it only examines the fundamental

aspect of the system. It makes sure that input is properly

accepted and output is correctly produced.

In black box testing (Fig. 6), the integrity of external

information is maintained. The black box testing methods in

which user involvement is not required are functional testing,

stress testing, load testing, ad-hoc testing, exploratory testing,

usability testing, smoke testing, recovery testing and volume

testing, and the black box testing techniques where user

involvement is required are user acceptance testing, alpha

testing and beta testing. Other types of Black box testing

methods includes graph based testing method, equivalence

partitioning, boundary value analysis, comparison testing,

orthogonal array testing, specialized testing, fuzz testing, and

traceability metrics [15].

D. Grey Box Testing

Grey box testing techniques combined the testing

methodology of white box and black box. Grey box testing

technique is used for testing a piece of software against its

specifications but using some knowledge of its internal

working as well [15]. Grey box testing may also include

reverse engineering to determine, for instance, boundary

values or error messages. Grey box testing is a process which

involves testing software while already having some

knowledge of its underline code or logic. The understanding

of internals of the program in grey box testing is more than

black box testing, but less than clear box testing [18].

V. ANALYSIS OF WEB APPLICATION TESTING

TOOLS

Two approaches for testing web applications: static analysis

and dynamic analysis. In the context of Web applications,

static approaches have limited potential because 1) Web

applications are often written in dynamic scripting languages

that enable on-the-fly creation of code, and 2) control in a

Web application typically flows via the generated HTML text

(e.g., buttons and menus that require user interaction to

execute), rather than solely via the analyzed code.

Both of these issues pose significant challenges to

approaches based on static analysis. Testing of dynamic Web

applications is also challenging because the input space is

large and applications typically require multiple user

interactions. The state of the practice in validation for Web-

standard compliance of real Web applications involves the use

of programs such as HTML Kit5 that validate each generated

page, but require manual generation of inputs that lead to

International Journal of Computer Science and Telecommunications [Volume 2, Issue 3, June 2011] 5

displaying different pages. We know of no automated tool that

automatically generates inputs that exercise different control-

flow paths in a Web application, and validates the dynamically

generated HTML pages that the Web application generates

when those paths are executed.

A. Static Analysis Web Software Tools

Table 1 describes some web software tools.

B. Dynamic Analysis Testing Tools

i) DART: (directed automated random testing) integration of

random testing and dynamic test generation using symbolic

reasoning is best intuitively explained with an example.

 Consider the function h in the file below:

 int f(int x) f return 2 * x; g

 int h(int x, int y) {

if (x != y)

if (f(x) == x + 10)

abort(); /* error */

return 0;

 }

The function h is defective because it may lead to an abort

statement for some value of its input vector, which consists of

the input parameters x and y. Running the program with

random values of x and y is unlikely to discover the bug. The

problem is typical of random testing: it is difficult to generate

input values that will drive the program through all its

different execution paths. In contrast, DART is able to

dynamically gather knowledge about the execution of the

program in what we call a directed search.

Starting with a random input, a DART-instrumented

program calculates during each execution an input vector for

the next execution.

Table 1: Analysis of web software tools

This vector contains values that are the solution of symbolic

constraints gathered from predicates in branch statements

during the previous execution. The new input vector attempts

to force the execution of the program through a new path.

By repeating this process, a directed search attempts to

force the program to sweep through all its feasible execution

paths.

For the example above, the DART-instrumented h initially

guesses the value 269167349 for x and 889801541 for y. As a

result, h executes the then-branch of the first if-statement, but

fails to execute the then-branch of the second if-statement;

thus, no error is encountered. Intertwined with the normal

execution, the predicates x0 ≠y0 and 2, x0 ≠ x0 + 10 are

formed on-the-fly according to how the conditionals evaluate;

x0 and y0 are symbolic variables that represent the values of

the memory locations of variables x and y. Note the

expression 2.x0, representing f(x): it is defined through an

interprocedural, dynamic tracing of symbolic expressions.

The predicate sequence hx0 ≠ y0; 2, x0 ≠x0 + 10i, called a

path constraint, represents an equivalence class of input

vectors, namely all the input vectors that drive the program

through the path that was just executed. To force the program

through a different equivalence class, the DART-instrumented

h calculates a solution to the path constraint hx0 ≠ y0; 2.x0 =

x0 + 10i obtained by negating the last predicate of the current

path constraint. A solution to this path constraint is (x0 = 10;

y0 = 889801541) and it is recorded to a file. When the

instrumented h runs again, it reads the values of the symbolic

variables that have been solved from the file. In this case, the

second execution then reveals the error by driving the program

into the abort() statement as expected.

ii) Apollo: Apollo first executes the Web application under

test with an empty input. During each execution, Apollo

monitors the program to record path constraints that reflect

how input values affect control flow. Additionally, for each

execution, Apollo determines whether execution failures or

HTML failures occur (for HTML failures, an HTML validator

is used as an oracle). Apollo automatically and iteratively

creates new inputs using the recorded path constraints to

create inputs that exercise different control flow. Most

previous approaches for concolic execution only detect

“standard errors” such as crashes and assertion failures. This

approach detects such standard errors as well, but also uses an

oracle to but which are interactively supplied by the user (e.g.,

by clicking buttons in generated HTML pages).

C. Comparative Study

Comparing the web application testing tools such as DART,

and Apollo. DART tool generates test cases by executing the

web application on concrete user inputs. This tool is best

suitable for testing static web sites and is not suitable for

dynamic web applications. The DART needs user inputs for

generating the test cases. It is most difficult thing for the

human being to provide dynamic inputs for all the possible

cases.

Apollo works on dynamic web applications. It can generate

dynamic test cases for the dynamic web applications (PHP,

ASP).This approach focus on Server-Side-Code and some of

client-side through web forms and aims to identify two kinds

Dr. S. M. Afroz et al. 6

of failures of web applications like Execution failures and

HTML failures with better result analysis

VI. CONCLUSION

A technique for finding faults in PHP Web applications that

is based on combined concrete and symbolic execution. The

technique not only detects runtime errors but also uses an

HTML validator as an oracle to determine situations where

malformed HTML is created. We address the web application

issues, such benefits and views, next, bugs and software

testing tools, than the analysis of static and dynamic tools and

comparison DART, Apollo. Both are dynamic test generation

tools but DART shows the good results. In future we can

extend this analysis with comparing CUTE, EXE and

implementation, results of DART, Apollo web tools.

REFERNCES

[1] C. Liu, D. Kung, P. Hsia, and C. Hsu, “Structural Testing of

Web Applications,” Proc. 11th IEEE Int’l Symp. Software

Reliability Eng., pp. 84-96, Oct. 2000.

[2] Business Internet Group of San Francisco, “The BIG-SF

Report on Government Web Application

Integrity,”http://www.tealeaf.com/downloads/news/analyst_rep

ort/BIG-SF_Report_Gov2003-05

[3] Business Internet Group of San Francisco, “The Black Friday

Report on Web Application Integrity,” http://www.tealeaf.com/

downloads/news/analyst_report/BIG-

SF_BlackFridayReport.pdf, Year?

[4] S. Manley and M. Seltzer, “Web Facts and Fantasy,” Proc.

1997 Usenix Symp. Internet Technologies and Systems, 1997.

[5] F. Ricca and P. Tonella, “Analysis and Testing of Web

Applications,” Proc. Int’l Conf. Software Eng., pp. 25-34, May

2001.

[6] G. DiLucca, A. Fasolino, F. Faralli, and U. Carlini, “Testing

Web Applications,” Proc. Int’l Conf. Software Maintenance,

pp. 310-319, Nov. 2002.

[7] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz, Experiences

in Engineering Flexible Web Services,” IEEE MultiMedia, vol.

8, no. 1, pp. 58-65, Jan. 2001.

[8] Roy T. Fielding and Richard N. Taylor. Principled design of

the modern web architecture. In ICSE 2000 Limerick Ireland,

2000.

[9] Guntram Graef and martin Gaedke. An evolution-oriented

architecture for web applications. In Second Nordic Workshop

on Software Architectureb(NOSA 1999),1999.

[10] Ahmed E. Hassan. Architecture recovery of web applications.

Master’s thesis, University of Waterloo, 2001.

[11] Grady Booch Ivar Jacobsen and James Rumbaugh. The Unified

Software Development Process. AddisonWesley, 1999.

[12] Philippe Kruchten. The 4+1 view model of architecture. IEEE

Software 12(6), 12(6), 1995.

[13] Paul Clements Len Bass and Rick Kazman. Software

Architecture in Practice.AddisonWesley, 1998.

[14] S. Hansen S. Murugesan, Y. Deshpande and A. Ginige. Web

engineering: A new discipline for development of web-based

systems. In Proceedings of the First ICSE Workshop en Web

Engineering, 1999.

[15] Software testing glossary available at

http://www.aptest.com/glossary.html#performance testing

[16] Software testing by Jiantao Pan availableat

http://www.ece.cmu.edu/~roopman/des-899/sw_testing

[17] White box testing from wikipedia, the free encyclopedia.

[18] Software testing for wikipedia available

http://en.wikipedia.org/wiki/grey_box_testing#grey_

box_tetsing

[19] R. Alur, P. Cerny, G. Gupta, P. Madhusudan, W. Nam, and A.

Srivastava, “Synthesis of Interface Specifications for Java

Classes”, In Proceedings of POPL’05 (32nd ACM Symposium

on Principles of Programming Languages), Long Beach,

January 2005.

[20] T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of

CAV’2001 (13th Conference on Computer Aided

Verification),volume 2102 of Lecture Notes in Computer

Science, pages 260–264, Paris, July 2001, Springer-Verlag.

 Professor Dr. Afroz S.M.
 received Ph.D degree from Jawaharlal

 Nehru Technological University

 Hyderabad, India in the faculty of Spatial

 Information Technology in the year

 2009. Completed his M.Tech in

 Information Technology in the year 2003

 and M.Sc in Applied Physics with

 specialization in quantum opto

electronics

 in the year 1992 from Shri G S Institute

 of Technology and Science, Indore. Teaching experience spanning

over 19 years, presently his job carrier is Dean, Professor and Head,

Dept. of CSE at Nizam Institute of Engg. and Technology,

Deshmukhi, Near Ramoji film city, Hyderabad, India. Currently his

field and research interest in the Digital image processing, Data

Warehousing & Data Mining(especially in spatial mining),Neural

networks and OOAD. He has 8 research papers to his credit,

(smafroz@yahoo.com).

N. Elezabeth Rani pursuing M.Tech

(SE) at Nizam Institute of Engg & Tech,

areas of interest are Neural Networks,

Compiler Design and Web Applications.

N. Indira Priyadarshini pursuing

M.Tech (IT) at GuruNank Engg

College, areas of interest are Neural

Networks, Mobile Computing and Web

Applications.

