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Abstract— Advances in technology have transformed the way 

we understand and respond to weather patterns, leading to 

significant improvements in forecasting and climate change 

mitigation. Historically, weather prediction played a crucial role 

in agriculture and human migration, but it has faced numerous 

challenges due to data ambiguity and the limitations of traditional 

numerical weather prediction (NWP) models. However, with the 

emergence of machine learning (ML), deep learning (DL), and the 

Internet of Things (IoT), new opportunities for more accurate and 

timely weather predictions have arisen. These advancements hold 

the potential to protect crops, alert farmers to adverse conditions, 

and contribute to climate change mitigation strategies. Machine 

learning and artificial intelligence (AI) methods have been 

integrated into weather forecasting to enhance prediction 

accuracy. Techniques such as neural networks, motion detection, 

and computer vision are applied to analyze vast datasets, 

providing more precise environmental monitoring. Innovations in 

IoT, along with machine learning models, offer the ability to 

detect changes in weather conditions in real-time, leading to more 

responsive forecasting. In this comprehensive review, we explore 

various deep learning, machine learning, and IoT-based 

approaches that are employed to improve weather prediction and 

analyze their comparative effectiveness. By examining these 

advanced methods, we aim to highlight their role in combating the 

impacts of global warming and supporting sustainable practices. 

The review also underscores how AI and ML techniques 

contribute to mitigating the consequences of climate change, 

enabling a proactive approach to safeguarding the environment 

and addressing global challenges. 

 

Index Terms— Machine Learning, Deep Learning, Weather 

Prediction, Weather Forecast, IoT, Python and Artificial Neural 

Network 

 

I. INTRODUCTION  

EATHER forecasting involves predicting future weather 

conditions using principles from physics, mathematical 

models, statistical analysis, and geographic information 

such as latitude. Since ancient times, humans have adapted to 

their environment by forecasting the weather to prepare for 

various conditions. Weather elements like humidity, 

precipitation, temperature, and wind can significantly impact 

our daily lives, and adjusting to these elements is crucial for 

well-being. 

Advancements in technology, such as Internet of Things (IoT) 

sensors, have simplified the process of monitoring and reacting 

to weather changes. For example, solar panels can capture and 

store energy during sunny days, which can then be used to 

power wind turbines and other equipment, ultimately benefiting 

agricultural practices. This integration of technology and 

weather forecasting allows for more efficient and sustainable 

ways to manage environmental changes. 

Machine learning is a branch of artificial intelligence that 

focuses on developing systems that can learn and evolve from 

experience, without the need for explicit programming. This 

self-improving capability offers a more reliable alternative to 

traditional human-based processes, which are prone to errors. In 

weather forecasting, machine learning algorithms analyze 

historical data to make future predictions, with ensemble 

learning emerging as a popular technique for climate and 

weather forecasting [1]. This approach relies on large datasets 

instead of physical processes, enabling the system to detect 

patterns and predict weather conditions with greater accuracy. 

Weather forecasting has a wide range of applications, from 

agriculture and tourism to aviation and disaster preparedness. 

However, it also faces challenges, such as handling massive 

amounts of weather data and building robust predictive models 

that can identify and use underlying structural trends [2]. The 

explosion of weather observation data and advancements in 

information and computer technology over the past decade have 

motivated researchers to explore innovative methods for 

weather prediction. 

As global warming and climate change continue to impact 

our planet, the need for accurate weather forecasting has 

become more critical to mitigate risks and respond to climate-

related disasters. Artificial intelligence and machine learning 

provide powerful tools to analyze vast datasets and make 

predictions that can help address these challenges. Between 

2000 and 2012, the world saw approximately $1.7 trillion in 

economic losses and nearly 2.9 billion people affected by 

climate-related events, underscoring the importance of 

improved weather forecasting in reducing the impact of global 

warming and other climatic shift [21]. 
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II. RELATED WORK 

A. Challenges in Weather Forecasting 

In the last decade, numerous significant efforts have 

addressed weather forecasting challenges through statistical 

modeling, including machine learning techniques, with 

promising outcomes. These initiatives have employed both 

manual and automated learning approaches. Weather 

forecasting data generally comprise high-dimensional time 

series collected from weather stations across different 

geographic regions. 

Several research studies have explored various neural 

network models to enhance weather forecasting accuracy. For 

example, Recurrent Neural Network (RNN) models have been 

used to predict annual runoff in specific regions. Chen and 

Hwang’[l]  research introduces a fuzzy time series model for 

temperature prediction, utilizing historical data translated into 

linguistic values for analysis. In another study, researchers 

found that a collection of artificial neural networks (ANNs) 

could effectively learn weather patterns by leveraging ANN 

features to statistically downscale rainfall forecasts. 

Additionally, a separate study proposed a chaotic oscillatory-

based neural network to analyze Light Detection and Ranging 

(LIDAR) data for weather-related insights. 

B. Recurrent Neural Network 

Recurrent neural networks, or RNNs, are a specialized form 

of artificial neural networks designed for processing time series 

data and sequences. A distinct type of RNN is the Elman 

network, which can have multiple hidden layers. Each hidden 

layer receives its weights from the layer preceding it, starting 

with the initial layer that connects to the input. This structure 

allows information to flow not only forward but also back to 

earlier layers, creating a form of recurrence. 

Elman networks use activation functions, which can vary 

but typically exhibit continuity and the ability to reach defined 

output values. The recurrent aspect of these networks allows 

for context preservation across time steps; specifically, the 

delay between the input of a previous hidden layer (at time \( t 

- 1 \)) and the current input (at time \( t \)) creates a dynamic 

where past information informs current processing. This 

recurrent connection inherently involves a feedback loop, 

allowing the network to adjust and accommodate potential 

noise or interference in the input data. Consequently, RNNs are 

particularly useful for tasks requiring temporal context, like 

sequence prediction and time-dependent pattern recognition. 

C. Data Collections 

The ENSO (El Niño Southern Oscillation) dataset contains 

key environmental indicators used to study climate patterns and 

weather fluctuations. This dataset includes various components 

such as wind patterns, the Southern Oscillation Index, sea 

surface temperature measurements, and data on outgoing 

longwave radiation. These elements are crucial for 

understanding the complex dynamics of ENSO, a climate 

phenomenon with significant impacts on global weather 

patterns. 

Several international organizations are responsible for 

collecting and disseminating this data, with the National 

Weather Service's Center for Environmental Prediction 

Climate, part of NOAA (National Oceanic and Atmospheric 

Administration), being one of the leading providers. This 

dataset is used by researchers and meteorologists worldwide to 

predict weather trends, monitor climate change, and study the 

broader effects of ENSO on global weather systems. 

D. Convolution Network (CN) 

Convolutional network (CN) models and similar 

architectures are inspired by biological systems, reflecting 

aspects of how the human brain processes information. 

According to B.1 & Heryadi [4], a deep CN architecture 

typically consists of multiple stages. In CN applications using 

color images as input, the feature map domain is usually a 2D 

array that represents one of the color channels of the input 

image. For audio data, feature maps are often structured as 1D 

arrays, while for video or volumetric images, the feature map 

domain can be a 3D array. This flexibility allows convolutional 

networks to process various types of data effectively, adapting 

to the specific requirements of each input format. The multi-

stage structure of CN models facilitates hierarchical feature 

extraction, with each stage learning increasingly complex 

representations from the input data. 

III.   LITERATURE REVIEW 

Traditionally, future weather states are forecasted by 

integrating the governing partial differential equations (PDEs) 

that represent the current weather conditions. This method has 

long been the foundation of weather prediction. These 

nonlinear PDEs encapsulate the atmospheric processes related 

to motion, heat, radiation, and chemistry. To obtain numerical 

solutions to these PDEs, spatial and temporal discretization 

techniques are applied. 

Numerical Weather Prediction (NWP) models use these 

equations to predict a range of meteorological variables, such 

as temperature, wind speed, precipitation, and sea level 

pressure. The process generally involves several key steps: 

 

Data Collection: Gathering datasets from remote sensing 

sources, such as satellites and weather stations. 

Data Preprocessing: Using a data assimilation system to 

clean and refine the raw datasets, ensuring they meet quality 

control standards. 

Modeling and Prediction: Feeding the processed data into 

machine learning models to generate precise weather forecasts. 

Data Visualization: Displaying the results in a 

comprehensible format for further analysis and interpretation. 

 

These steps constitute a generalized approach to numerical 

weather prediction, integrating traditional meteorological 

techniques with modern data processing and machine learning 

to enhance forecast accuracy and reliability. 

A. Machine Learning and Deep Learning Techniques  

DLWP, or Data-Driven Long-term Weather Prediction, 

represents an approach that relies on data-centric 

methodologies. Instead of traditional physics-based numerical 

weather prediction models, DLWP employs deep neural 
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networks (DNNs) to analyze large-scale datasets. These DNN 

models are designed to uncover underlying patterns, 

relationships, and correlations within the data, allowing them 

to capture the dynamics of weather phenomena. 

By feeding original datasets into DNN models, DLWP aims 

to derive meaningful insights into weather changes from vast 

amounts of meteorological data. The effectiveness of this 

approach depends on the choice of neural network architecture, 

which can vary based on the specific characteristics of the 

meteorological data. Some models might excel at capturing 

temporal patterns, while others are better suited for spatial 

correlations. 

The exploration of the most suitable DNN models for various 

data types is a key aspect of this approach. Researchers assess 

different architectures to determine which ones are most 

effective for specific weather-related tasks. This investigation 

involves considering unique meteorological data features, such 

as time series trends, spatial patterns, and multi-dimensionality, 

to optimize the performance and accuracy of weather 

prediction. 

DLWP's data-driven nature provides an alternative to 

conventional weather forecasting methods, leveraging the 

computational power of deep learning to improve the precision 

and reliability of weather predictions. The ongoing research in 

this area focuses on identifying the most appropriate models for 

each dataset and refining the techniques to enhance predictive 

capabilities. 

B. Multi-layered datasets  

Temperature data at a specific location and moment can be 

represented by a four-dimensional array, with real-type values, 

structured as form t (longitude, latitude, level, time). This 

multidimensional representation allows for a detailed analysis 

of temperature across various geographic and temporal scales. 

Meteorological data, derived from in-situ observations and 

model simulations, often exhibit multi-resolution and 

multidimensional characteristics, ranging from one-

dimensional to four-dimensional arrays. The complexity of 

these datasets can pose significant challenges in terms of 

processing and analysis. 

Autoencoders, a type of neural network, are commonly used 

to reduce dimensionality in complex datasets. These models 

are particularly well-suited for handling high-dimensional, 

real-type data, offering a way to compress and simplify 

information while preserving key features. In meteorology, 

autoencoders and their variants play an important role in 

processing large-scale, complex datasets, enabling more 

efficient data analysis and supporting a range of applications, 

from weather forecasting to climate research. Their ability to 

reduce dimensionality helps address computational challenges 

while maintaining the essential structure and information 

contained in the original data. 

C. Satellite photography datasets 

Remote sensing data, like images from meteorological 

satellites, currently generate hundreds of gigabytes of 

information each day. This data is vital for weather forecasting, 

especially when identifying extreme weather conditions. 

Convolutional Neural Networks (CNNs) are a subset of deep 

neural networks designed for feature representation in image 

processing tasks. They are particularly effective in handling 

large-scale image data due to their structure, which involves 

sharing convolutional kernel weights among neurons and 

applying pooling functions to reduce the number of 

hyperparameters in each hidden layer. This design helps to 

minimize the risk of overfitting and avoid falling into local 

optima during training. 

Because of these characteristics, CNNs have become widely 

used in weather forecasting applications, where they excel at 

processing complex satellite imagery to detect patterns and 

anomalies. Their ability to recognize features within images 

makes them ideal for analyzing weather-related data and 

identifying extreme weather events. By leveraging CNNs, 

meteorologists can improve the accuracy of weather forecasts 

and enhance early warning systems for severe weather, 

ultimately contributing to better disaster preparedness and 

public safety. 

D. Fully Driven Hybrid Architectures  

Meteorological data exhibit both geographical and temporal 

structures, suggesting that data-driven weather prediction can 

be formulated as a sequence problem to capture spatial and 

temporal elements in weather datasets. To address this, hybrid 

architectures are used, combining different deep learning 

techniques to process complex meteorological data effectively. 

These architectures aim to harness the strengths of different 

models to improve weather forecasting accuracy and 

efficiency. 

E. Current Weather and Predicted Weather 

Lee, G. H. presents a Convolutional LSTM (ConvLSTM) 

network designed for precipitation nowcasting, where 

convolutional operations are applied in both input-to-state and 

state-to-state transitions. This architecture incorporates a 

prediction network and an encoding network. Unlike 

traditional fully connected LSTMs, ConvLSTM leverages 

convolutional structures to encode spatiotemporal relationships 

in meteorological data, enhancing weather forecast accuracy. 

Although ConvLSTM's structure doesn't inherently rely on 

specific locations, the Trajectory-Gated Recurrent Unit 

(TrajGRU) is proposed to account for location-based variations 

in natural motion and transformations. TrajGRU dynamically 

creates a local neighborhood set for each position and 

timestamp using the current input and previous state, allowing 

it to capture complex spatiotemporal correlations in 

meteorological data. 

F. Upcoming Weather Disaster Prediction 

Weather disaster prediction, such as forecasting extreme 

weather events, has similarities to flood disaster prediction 

because both rely on analyzing datasets with analogous 

patterns. The overlap in data characteristics allows for cross-

application of predictive models, enabling disaster 

preparedness and mitigation. By identifying commonalities 

between these different datasets, researchers can apply similar 

techniques to predict and manage the risks associated with 

weather-related disasters. 
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IV.    METHODOLOGY 

Various machine learning models are used for weather 

prediction. Among them, several key structures and 

architectures have emerged: 

Core Deep Neural Network (DNN) Models: These include 

basic architectures such as Autoencoders, Convolutional 

Neural Networks (CNNs), and Long Short-Term Memory 

(LSTM) networks. These foundational models are utilized to 

analyze and predict weather patterns. 

Fully Data-Driven Hybrid Architectures: These models are 

built on fundamental DNN structures and aim to capture more 

intricate temporal and spatial characteristics. They combine 

various DNN approaches to address the complexities of 

weather data. 

Combined Data-Driven and Theory-Guided Models: These 

architectures merge data-driven approaches with traditional 

Numerical Weather Prediction (NWP) methodologies, 

blending the flexibility of deep learning with theoretical 

underpinnings. This hybrid approach seeks to enhance the 

predictive power of weather models. 

1) Upgrading DNN Models with Theoretical Information 

Traditional mathematical models in weather prediction rely 

on foundational theoretical principles, including Newton's 

second law of motion, the law of conservation of mass, the first 

law of thermodynamics, the ideal gas law, and hydrostatic 

equilibrium. These principles underpin Numerical Weather 

Prediction (NWP) models, allowing them to simultaneously 

capture the spatial-temporal dynamics of various 

meteorological components and consider the interactions 

among different weather-related variables. As a result, 

traditional models can simulate many critical aspects of 

observed weather and climate [6]. 

In contrast, data-driven Deep Neural Network (DNN) 

models can sometimes struggle to capture the complex 

causality inherent in weather and climate systems because they 

primarily rely on empirical data. This can lead to challenges 

when modeling the entire intricate framework of climate and 

weather without understanding the underlying principles. 

One approach to enhance DNN models is to incorporate 

scientific prior knowledge as constraints during training. This 

integration can help ensure physical consistency and improve 

the interpretability of DNN-based models. By embedding 

theoretical information into DNN models, it's possible to 

bridge the gap between purely data-driven approaches and 

traditional theoretical models, creating a more robust and 

reliable framework for weather prediction. This hybrid 

approach can lead to more accurate forecasts and a deeper 

understanding of the causal relationships in meteorological and 

climate systems. 

2) Approaches to Integrate LSTM Autoencoders with Weather 

Prediction Models  

Based on the Long Short-Term Memory (LSTM) 

Autoencoder approach [7], Wang et al. [8] frame the problem 

of weather forecasting as an end-to-end deep learning (DL) 

challenge and propose an efficient data fusion system. This 

system learns from historical weather data while integrating 

prior information from Numerical Weather Prediction (NWP), 

allowing it to predict a range of meteorological variables. 

Using a unique loss function based on negative log-probability 

error, this approach enables both single-value forecasting and 

uncertainty estimation. This innovative method merges DNN 

with traditional NWP to create a more effective weather 

forecasting system. 

To address real-time series forecasting, the authors of [9] 

designed a neural network architecture to predict 

meteorological conditions, focusing on a multi-layer 

perceptron neural network. Leveraging the European Centre 

for Medium-Range Weather Forecasts (ECMWF) data 

collection and specific sensor parameters, this architecture 

provides real-time, high-precision outputs. This design is 

instrumental in delivering accurate weather forecasts and 

allows for more effective handling of complex time-series data. 

By combining deep learning models like LSTM Autoencoders 

with NWP, these approaches offer a promising path for 

improving weather forecasting. Integrating data-driven 

methods with established numerical weather prediction 

techniques creates a hybrid system capable of predicting 

meteorological conditions with greater accuracy and reliability. 

This fusion of approaches is particularly useful for handling 

uncertainty in weather forecasts and delivering real-time 

results. 

3) Refining Results of DNN with Theoretical Constraints 

Grover et al. propose a hybrid architecture designed to 

capture the spatial-temporal relationships among 

meteorological variables. This architecture is built upon three 

key components: 

i. Base-Up Predictors: A group of base-up predictors for 

each weather characteristic, trained using accurate data. 

This approach helps to capture the essential trends and 

patterns within the data. 

ii. Physical Constraints: The outputs of these predictors are 

constrained by physical laws to ensure spatial smoothness. 

This component introduces theoretical knowledge, 

grounding the predictions in known physical principles, 

thereby increasing the model's reliability. 

iii. Deep Belief Network (DBN): The final section consists of 

a hierarchical deep belief network (DBN), which 

comprises layers of stacked Restricted Boltzmann 

Machines (RBM). This component models the joint 

statistical relationships among different meteorological 

variables, providing a higher-level view of the data 

structure. 

By combining these three components, this hybrid approach 

allows for better refinement of predictive models, 

accommodating spatial relationships and physical constraints. 

The inclusion of DBN provides the advantage of capturing 

longer-range conditions across space, enhancing the model's 

ability to generalize and make more accurate predictions for 

large-scale phenomena. 

This refined architecture improves upon traditional data-

driven models by integrating domain-specific knowledge and 

statistical modeling techniques. By incorporating physical 

constraints and high-level joint relationships, this approach 

ensures that the resulting predictions align with known 
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meteorological principles, thereby contributing to more robust 

and reliable weather forecasting. 

4) Machine Learning-driven mathematical model development 

The computational demands of Numerical Weather 

Prediction (NWP) have grown significantly due to the 

increasing volume of meteorological data and the ongoing push 

for higher model resolutions. These rising computational 

requirements have created challenges for traditional NWP 

methods, potentially leading to bottlenecks and decreased 

efficiency. 

Deep Neural Network (DNN) models offer an alternative 

approach by "learning" system behaviors through data-driven 

techniques, eliminating the need to solve complex partial 

differential equations (PDEs). This ability to model weather-

related processes quickly and efficiently can help overcome 

some of the limitations of traditional NWP. 

A trained DNN can serve as a substitute for a specific module 

or process within NWP models, either improving the accuracy 

or the computational feasibility of the overall system. By 

replicating specific cycles or components, DNNs can offer a 

more streamlined and adaptive approach to weather prediction, 

reducing the burden on computational resources while 

maintaining or enhancing forecast accuracy. 

5) Convolutional Neural Networks and Artificial Neural 

Networks  

Artificial neural networks fundamentally consist of a series 

of nonlinear functions applied to input data, resulting in one or 

more output variables. Convolutional Neural Networks 

(CNNs) represent a specialized subset of artificial neural 

networks that are extensively used in deep learning 

applications. They gained significant recognition in 2012 for 

their breakthrough performance, especially in image 

recognition tasks, and have since become a leading approach in 

several fields, including weather forecasting and 

meteorological analysis. 

When dealing with meteorological data presented on regular 

2-D grids, standard CNN architectures developed for image 

recognition tasks can be directly applied. This is because the 

spatial structure of weather data aligns well with the design of 

CNNs, which excel at capturing spatial patterns and features. 

Unlike other approaches, such as multi-linear regression, 

CNNs do not require dimensionality reduction, making them 

particularly well-suited for processing complex meteorological 

data. 

The ability to apply CNNs directly to meteorological data 

provides a significant advantage in weather forecasting, 

allowing researchers to leverage advanced deep learning 

techniques to analyze and predict weather patterns with greater 

accuracy and efficiency. This direct application underscores 

the flexibility and robustness of CNNs in handling various 

types of data, supporting their growing popularity in the field 

of meteorology and beyond. 

6) Weather Pattern Segmentation 

Recent studies have shown that the accuracy and propagation 

of medium-range weather forecasts over Europe depend on 

initial meteorological conditions in the Euro-Atlantic region. 

Researchers examined four weather patterns identified through 

k-means clustering of the first ten Empirical Orthogonal 

Functions (EOFs) of the 500hPa geopotential height field. 

These patterns resemble well-known atmospheric 

configurations, such as NAO+, NAO-, Atlantic Ridge, and 

Blocking streams. This raises the question of whether these 

weather patterns can be used as indicators of forecast 

reliability. 

To investigate, researchers computed the average spread for 

each of the four weather patterns based on their training data. 

They then used this information to gauge the likely consistency 

of forecasts by measuring how far each pattern's spread was 

from current weather conditions. For each test day, forecasts 

were made by comparing the calculated mean distance to the 

current weather conditions, providing insights into forecast 

consistency. 

7) Results 

This section presents the outcomes of our machine learning 

(ML) approach. We begin by examining the discrepancy 

between the expected and actual model spread. Next, we assess 

how well our forecasts can distinguish days with significant 

errors from those with more accurate assumptions. We evaluate 

the effectiveness of our approach relative to the time spent 

preparing the dataset. 

Following this, we measure the performance of our method 

against traditional techniques as outlined in the 

"Methodologies" section. This comparison allows us to gauge 

the improvement our ML strategy offers over conventional 

approaches. By covering these elements, we aim to provide a 

comprehensive overview of the strengths and limitations of our 

ML-based forecasting system. 

8) Diagnosing Forecast Errors 

To illustrate the usability advantage of analyzing correlations 

(e.g., "uncertainty predictions with a correlation of X or higher 

with model spread are preferred"), we examine how well our 

uncertainty forecasts distinguish between days with high and 

low forecast errors. This approach involves assessing the 

relationship between spread (forecast uncertainty given by 

ensemble models) and the actual forecast skill (measured by 

error). 

While scatterplots of spread versus error offer a basic view, 

they can be misleading due to the reported inverse correlation 

between consistency and forecast error. To mitigate this, 

forecasts are grouped into "bins" based on their spread, with 

each bin containing about 300 data points. This technique helps 

smooth out noise and makes interpreting trends easier, though 

there can be some leveling off at the higher and lower 

percentiles. 

A robust measure of forecast uncertainty is indicated by a 

consistent increase in average error with rising predicted 

uncertainty. Our analysis shows that the network trained on 

spread largely exhibits this characteristic, with a minor dip in 

the middle range and some leveling at high uncertainty. The 

network trained on error displays a similar pattern, suggesting 

that both approaches are effective at indicating forecast 

uncertainty. Overall, these findings align with prior results 

indicating that both training methods yield comparable 
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performance in forecasting uncertainty, validating their use as 

reliable indicators of weather forecast uncertainty. 

9) Comparing with Standard Reference Methods 

To gauge the effectiveness of our method and understand its 

performance across various scenarios, we compare our results 

with those from the benchmark methods detailed in Section 3.2. 

We examine the correlation between predicted uncertainties 

from our models and the GEFS forecast ensemble spread for 

lead days 3 to 6. Additionally, we assess the F1 score to 

evaluate the accuracy in classifying forecast errors. Figure 11 

illustrates the outcomes of this analysis. 

Overall, our approach significantly outperforms a broad 

range of other methods across various lead times, both in terms 

of its correlation with forecast spread and its ability to describe 

forecast error [11]. The nearest neighbor method demonstrates 

a weak to moderate correlation with the ensemble spread for 

days 3 and 4 but shows no significant correlation on days 5 and 

6. The local method exhibits consistent, albeit low, correlation 

across all lead times except day 6. Clustering techniques 

perform poorly for short lead times but improve at day 6, 

approaching the skill of our spread-trained neural network. 

Overall, the baseline methods perform well, but our approach 

consistently demonstrates superior skill, especially in terms of 

correlation and forecast error correction. 

V.   FINAL RESULTS 

A) Outcomes of Experiments under Low-Moisture Conditions 

In 2012, a widespread drought in the United States led to a 

significant reduction in corn yields, dropping by about 22.5%. 

To understand how this drought impacted the accuracy of yield 

forecasts, we used six artificial intelligence models to predict 

corn yields, utilizing a spatiotemporal coordinate database. 

The actual and predicted corn yields for the study period were 

analyzed, with red dots representing data from the 

exceptionally dry 2012 season and black dots indicating all 

other years. The Deep Neural Network (DNN) model displayed 

the most accurate results, with minimal deviation from the ideal 

1:1 line. In contrast, the other five models exhibited greater 

variability and slight judgment errors, indicating that they 

struggled to adapt to the extreme drought conditions in 2012. 

The DNN model, however, managed to provide predictions 

that closely aligned with actual yield statistics, suggesting it 

effectively avoided overfitting and handled exceptions well. 

The accompanying figure illustrates both the actual and 

predicted corn yields, highlighting the errors in predictions 

from the leave-one-year-out blind tests conducted for 2006-

2015. While 2012's corn yields were lower due to the drought, 

the DNN model's prediction accuracy remained consistent with 

results from other, more typical years. 

B) Data from Experiments Conducted During Heatwaves 

We conducted sensitivity tests to assess how well six AI 

models could predict crop yields during varying durations of 

heatwaves. These tests helped gauge the models' accuracy 

when subjected to heatwaves lasting between three and fifteen 

days. Using six different AI models, we computed the accuracy 

metrics for predicting corn yields under these heatwave 

conditions. 

The accuracy of the other five models decreased over time. 

The DNN model showed a mean absolute error (MAE) of 0.781 

tons per hectare for heatwaves longer than five days, whereas 

the other models exhibited MAE values ranging from 1.068 to 

1.352 tons per hectare. The DNN model's root mean square 

error (RMSE) was 1.033 tons per hectare, while the RMSE for 

the other models ranged from 1.345 to 1.776 tons per hectare, 

indicating a 30-72% improvement in precision by the DNN 

model. This indicates that the DNN model effectively handled 

varying heatwave conditions. 

C) Weather Event Typology 

To evaluate the proposed weather event classification model, 

we used the Los Angeles weather history dataset and the J48 

implementation of C4.5, employing various cross-validation 

methods like 5-fold, 10-fold, and 20-fold, as well as random 

splits, such as 50-50, 60%-40%, and 70%-30%. We compared 

the performance of the C4.5 classifier against a classic learning 

algorithm, Naive Bayes, and presented the results in [14]. 

Each experiment was run multiple times with different 

random seeds, averaging results over 20 experimental runs. To 

assess the performance, we computed metrics like accuracy, 

precision, recall, and F-score for each weather event class. 

Higher values for these metrics indicate better performance in 

classifying weather events. 

D) Limited information 

Traditional weather prediction models rely heavily on data 

from radiosonde imaging. However, the number of radio 

stations worldwide has decreased in recent years. Advanced 

countries are investing more in launching satellites than 

deploying weather balloons. While satellite data is globally 

abundant, data integration specialists still face challenges in 

effectively processing this information for use in weather 

models. Additionally, critical atmospheric variables, especially 

those over the oceans, remain challenging to capture. As a 

result, the accuracy of weather prediction models depends 

significantly on the quality and completeness of their source 

data. 

E) Anticipating Rainfall Over the Coming Days 

This study examines time-series data from five major UK 

cities to evaluate three different LSTM-based neural network 

architectures for predicting 8-hour precipitation volumes. 

Specifically, it compares models based on LSTM Networks, 

Stacked-LSTM Networks, and Bidirectional-LSTM Networks 

with an XGBoost decision tree algorithm and a model derived 

from AutoML. The experimental procedure is as follows: 

Build an XGBoost model for each of the five datasets as a 

baseline, with a limited hyperparameter search to determine 

optimal values. 

Use an AutoML tool to evaluate various regression 

algorithms, selecting the best-performing model for each 

dataset. 

Construct two models based on LSTM Networks and one 

model based on Stacked-LSTM Networks, with non-

comprehensive hyperparameter tuning for each dataset. 
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Identify the best-performing model from the previous step and 

construct two Stacked-LSTM models and one Bidirectional-

LSTM model. 

The performance of these algorithms can be influenced by 

various design choices, including the values of parameters and 

hyperparameters. Although each dataset underwent a non-

comprehensive hyperparameter tuning process, it was outside 

the scope of this study to identify the optimal values for each 

precipitation forecasting model's parameters and 

hyperparameters. 

F) Support Vector Machine (SVM) 

Support vector machines (SVMs), rooted in the Vapnik-

Chernoverkis theory, are widely utilized for prediction, 

classification, and regression analysis due to their ability to 

address non-linear problems effectively. Unlike many other 

machine learning models, SVMs can operate as comprehensive 

classifiers and handle instances with limited training data. 

Here's a summary of how SVMs operate and their predictive 

capabilities: 

Data Processing: The initial step involves adjusting the data 

to fit the SVM structure. If the input contains categorical 

attributes, it must be converted to numerical format. 

Additionally, data scaling is crucial to streamline computation 

and enhance performance. 

Kernel Selection: The SVM's flexibility comes from its 

various kernel functions, such as linear, polynomial, sigmoid, 

and radial basis function (RBF). RBF is particularly effective 

for mapping data to higher-dimensional spaces, allowing 

SVMs to address complex non-linear relationships. 

Avoiding Overfitting: To prevent overfitting, cross-

validation and penalty parameters are used. The choice of 

kernel also plays a role in managing overfitting risks. Linear 

kernels are preferred when the dataset has a high number of 

features. 

Applications: SVMs have proven reliable in predicting 

energy consumption, with RBF being the typical choice for 

energy forecasting. In scenarios with a high number of features, 

linear kernels might be more suitable. SVMs' versatility and 

robustness make them a preferred choice for various prediction 

tasks, such as predicting hourly cooling loads or analyzing 

relationships between different data points. 

Overall, SVMs' ability to address non-linear problems with 

robustness and flexibility has made them a popular choice for 

various machine learning applications. 

G) Integrated Machine Learning Model 

Gartner's 2016 Hype Cycle (Forni and Meulen, 2016) 

identified that AI technology had peaked in terms of inflated 

expectations. Given the complexity and extensive testing 

involved, hybrid AI methods have become more popular. For 

instance, Greenery et al. (2012) combined traditional analysis 

with AI techniques to improve the classification and prediction 

of various compounds. Similarly, Voyant et al. (2017) 

suggested that a hybrid approach outperforms single predictors 

for solar radiation forecasting. Marasco and Kontokosta (2016) 

found that AI technology could rapidly assess energy 

efficiency when regulatory records decline. Cramer et al. 

(2017) suggested that AI-based frameworks could help predict 

rainfall. 

In a world of rapidly growing data, the most successful tools 

will be those that can manage large volumes of information 

while providing quick responses. Thus, a hybrid AI approach 

is considered the next major development in the field. By 

combining different AI techniques, hybrid methods can 

leverage the strengths of each while minimizing weaknesses. 

According to Wang et al., hybrid AI can be classified into two 

types: heterogeneous models that blend different foundational 

models and homogeneous models that use similar underlying 

structures (Hao et al., 2018; Wang et al., 2017). 

VI.   CONCLUSION 

Our study examined whether AI techniques could estimate 

weather conditions and forecast uncertainty based on errors and 

dispersions from past ensemble predictions. Using a 

convolutional neural network trained on either the errors from 

past deterministic weather forecasts or the ensemble spread 

from earlier group predictions, we found that it is possible to 

assign a scalar value of reliability or forecast uncertainty to a 

new climate field. The results suggest that our AI-based 

approach can effectively indicate forecast uncertainty. 

The dataset used, GEFS reforecast v2, is consistently 

updated, making our approach applicable to operational 

settings. While our method doesn't perform as well as ensemble 

spread when predicting forecast errors, it generally surpasses 

two other methods cited in literature—classification by 

weather type and persistence in phase space—at lead times up 

to six days. 

However, this approach has a significant limitation: the 

reliance on past forecast data to train the model. Training takes 

about 30 minutes with two NVidia K80 GPUs, while inference 

(feeding an input field to predict uncertainty) requires only 

seconds, making this method much more cost-effective than 

running a full ensemble NWP model. In operational settings, 

the network can be retrained daily to incorporate new data and 

ensure optimal performance. This approach could be used to 

gauge the reliability of forecast models and help decide the 

number of ensemble runs needed, thus improving resource 

allocation in weather forecasting. 
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