
International Journal of Computer Science and Telecommunications [Volume 15, Issue 1, March 2024] 29

Journal Homepage: www.ijcst.org

Abdul Samad1, Saad Altaf2, M. Junaid Arshad3

1,2,3Department of Computer Science, University of Engineering & Technology Lahore, Pakistan
1abdulsamad10911@gmail.com, 2saadmayo9876@gmail.com

Abstract—Penetration testing, commonly referred to as

pretesting or PT, is a prevalent method for actively evaluating the

security measures of a computer network. This involves planning

and executing various attacks to identify and exploit existing

vulnerabilities. Despite the continuous evolution of tools, current

penetration testing methods are becoming increasingly non-

standard, intricate, and resource intensive. In this paper, we

propose and assess an innovative AI-driven pen-testing system

named the Intelligent Automated Penetration Testing System

(IAPTS). This system utilizes machine learning techniques,

specifically Reinforcement Learning (RL), to comprehend and

replicate both average and complex pen-testing activities. IAPTS

comprises a module that seamlessly integrates with established PT

frameworks, allowing it to capture information, learn from

experiences, and replicate tests in subsequent similar testing

scenarios. The primary objective of IAPTS is to optimize human

resources while delivering significantly improved results in terms

of time efficiency, reliability, and testing frequency. The approach

taken by IAPTS involves modeling PT environments and tasks as

a partially observed Markov decision process (POMDP) problem,

which is effectively solved by a POMDP solver. Although the focus

of this paper is limited to PT planning for network infrastructures

and not the entire practice, the findings strongly support the

hypothesis that RL can elevate PT capabilities beyond those of any

human PT expert, particularly in terms of time efficiency,

coverage of attack vectors, and the accuracy and reliability of

outputs. Furthermore, this research addresses the intricate

challenge of capturing and reusing expertise by empowering the

IAPTS learning module to store and reuse PT policies. This

mimics the learning process of a human PT expert but in a more

efficient manner.

Index Terms—Machine Learning, Software Security,

Automated Penetration Testing, Attack Tree, Deep

Reinforcement Learning a Deep Q-Learning Network

I. INTRODUCTION

N the contemporary landscape of computer networks, the
escalating frequency, complexity, and sophistication of cyber
threats have made them more vulnerable than ever.

Penetration testing (often referred to as pen-testing or PT) has
emerged as a proactive approach to assess the security of digital
assets, ranging from individual computers to websites and
networks [21], [22]. This method involves actively seeking and

exploiting existing vulnerabilities, mirroring the operational
mode employed by hackers in real-world cyber-attacks.

In the evolving digital environment, PT has become a vital
component of cybersecurity auditing, especially with the
implementation of the European General Data Protection
Regulation (GDPR) [23] for organizations. Besides meeting
legal requirements, PT is recognized by the cybersecurity
community as an effective means to evaluate the robustness of
security defenses against skilled adversaries and to ensure
adherence to security policies. The PT process, as depicted in
Figure, unfolds in multiple stages, demanding a high level of
competence due to the intricate nature of digital assets, such as
medium to large networks.

Efforts have been made in research to explore the potential of
automated tools for different PT stages, including
reconnaissance, identification, and exploitation. However,
while automation can alleviate the burden of repetitive tasks, PT
remains a dynamic and interactive process, requiring advanced
cognitive skills that are challenging to replicate through
automation.

The question arises as to whether Artificial Intelligence (AI)
can go beyond simple automation and provide expert-like
output. AI, particularly in the sub-field of machine learning
(ML), has shown promise in offloading work from humans and
handling details that humans may struggle to manage quickly or
accurately. The rapid progress in AI and ML leads to the belief
that an AI-based PT system, employing well-established models

Fig. 1: Stages of Penetration Testing

I

Advancements in Automated Penetration Testing for IoT

Security by Leveraging Reinforcement Learning

ISSN 2047-3338

Abdul Samad, Saad Altaf, M. Junaid Arshad 30

and algorithms for sequential decision-making in uncertain
environments, can bridge the gap between automation and
expertise in the PT community.

Existing PT systems and frameworks are evolving towards
becoming more autonomous, intelligent, and optimized[20].
The goal is to systematically and efficiently check all existing
threats without heavy human intervention. Moreover, these
systems should optimize resource utilization by eliminating
time-consuming and irrelevant directions, ensuring that no
threat is overlooked.

Beyond the execution of PT, the testing results need to be
processed and stored for further use. Unlike human PT experts
who continuously learn from tests and enrich their expertise,
automated systems often lack reusability of data. This becomes
crucial, especially in scenarios like regular compliance tests,
where the testing is repeated. In practical terms, as network
configurations often remain relatively stable, the output of
previous tests could be applicable for eventual re-testing
triggered by specific changes, such as network modifications,
system upgrades, or security policy modifications.

Automation is deemed the optimal solution to save time and
resources in various domains, and PT is no exception. The
offensive cybersecurity community has significantly focused on
automation in the past decade, leading to notable improvements
in task efficiency. However, considering the unique challenges
of PT, including the growing size and complexity of assets and
the multitude of vulnerabilities to be covered, blind automated
systems may fall short and perform worse than manual
practices. Consequently, researchers are exploring ways to
enhance such systems by adopting diverse solutions.

This paper delves into the thorough design and development
of an ML-based PT system. The objective is to conduct
intelligent, optimized, and efficient testing by autonomously
perceiving its environment and deciding how to act in PT tasks,
akin to human experts. The envisioned outcome is a system that
not only saves time and resources but also enhances accuracy,
testing coverage, and frequency.

II. LITERATURE REVIEW

This world is based on multidisciplinary research focused on
the performance and optimization of network security
assessment methods, specifically Vulnerability Assessment
(VA) and Perception Testing (PT). The main points from the
study and accepted practices are summarized, with initial
emphasis on the planning phase, use in the PT industry, and
research. In the realm of PT automation and augmentation,
research has explored various axes in the cybersecurity and
artificial intelligence field. Early studies modeled PTs as shot
charts and decision trees, constructing them as sequential
decision processes, but these approaches are prone to poor
evaluation [8], [9].

Automating PT tasks is a recommended strategy for effective
PT work, but full automation without optimization or
prioritization often requires human supervision, particularly in
large and medium-sized assets. Blind automation can lead to
problems such as long-term testing, vulnerabilities in network
connections, and security solution compromises. Previous
research primarily focused on optimizing the planning phase but
faced scalability limitations in larger networks. A notable work
introduced a PT model based on Planning Language
Description (PDDL) to handle attack and post-attack scenarios,

albeit limited to small and medium-sized networks. Some
studies explored how intelligence could enhance physical
training, but uncertainty in physical training remains a
challenge. An exception is the integration of ML algorithms into
Core-Impact PT and VA systems, although it does not model
the full PT application [6], [11].

Automating PT tasks is a recommended strategy for effective
PT work, but full automation without optimization or
prioritization often requires human supervision, particularly in
large and medium-sized assets. Blind automation can lead to
problems such as long-term testing, vulnerabilities in network
connections, and security solution compromises. Previous
research primarily focused on optimizing the planning phase but
faced scalability limitations in larger networks. A notable work
introduced a PT model based on Planning Language
Description (PDDL) to handle attack and post-attack scenarios,
albeit limited to small and medium-sized networks. Some
studies explored how intelligence could enhance physical
training, but uncertainty in physical training remains a
challenge. An exception is the integration of ML algorithms into
Core-Impact PT and VA systems, although it does not model
the full PT application [6], [12].

Despite theoretical advances, penetration testing is associated
with slow-running routine operations in large networks.
Solutions often falter, as evidenced by ongoing challenges in PT
implementation, including time and resource limitations.
Human capabilities are proven to be limited compared to
machines for many tasks, especially given modern computing
resources. An average access test takes a significant amount of
time, ranging from a few days to weeks for testing the average
LAN [13], [14].

III. METHODOLOGY

The study focused on assessing the Shadov system's

capability in gathering factual data for designing attack trees

and the Mulval platform for generating attack trees. A novel

approach involved the development of a method to create a

cyber intrusion matrix using the Mulval tool. Additionally,

enhancements were made to the Deep Q-Learning Network

method for analyzing the matrix and determining optimal

attack trajectories. The study employed the deep reinforcement

learning method, utilizing reward scores based on CVSS

ratings for each node. This approach facilitated the reduction

of attack trees and improved the identification of high-

probability attacks. The comparative analysis included

automated penetration testing methods, revealing practical

implications for enhancing computer system security through

the developed methodology.

A. Dynamic Cyber Intrusion Matrix Formation

Objective: Construct a dynamic matrix to represent cyber
intrusions that evolve with real-time data.

Equation 1:

𝑇ℎ𝑟𝑒𝑎𝑡 𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗(𝑡)  =  𝑀𝑢𝑙𝑣𝑎𝑙 (𝑆ℎ𝑎𝑑𝑜𝑣 (𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑖,𝑗  (𝑡)))

Where Dataseti,j (t) denotes the dataset at time t for intrusion

types i and j, and Mulval and Shadov represent functions of
Mulval platform and Shadov system, respectively.

International Journal of Computer Science and Telecommunications [Volume 15, Issue 1, March 2024] 31

Procedure:

• Continuously update the threat matrix based on real-time
data, ensuring a dynamic representation of emerging
threats.

• Integrate temporal aspects and attack paths to enhance
the matrix's descriptive power.

B. Reinforcement Learning-based Attack Tree Optimization

Objective: Optimize attack trees for automated penetration
testing using a Deep Q-Learning Network (DQN).

Equation 2:

(𝑄(𝑠, 𝑎)  =  (1  −  𝛼). 𝑄(𝑠, 𝑎) 

+  𝛼 (𝑅(𝑠, 𝑎)  +  𝛾 .   max(𝑄(𝑠′, 𝑎′))))

Where Q(s,a) is the Q-value for state-action pair (s,a), R(s,a)
is the reward, α is the learning rate, γ is the discount factor, and
s' is the next state.

Procedure:

• Train the DQN using the dynamic threat matrix,
updating Q-values based on the received rewards and
predicted future rewards.

• Incorporate temporal aspects and severity scores from
CVSS ratings into the reward assignment process.

C. CVSS-based Reward Assignment and Adaptation

Objective: Enhance the DQN's understanding of cyber
threats by incorporating Common Vulnerability Scoring System
(CVSS) ratings.

Equation 3:

𝑄(𝑠, 𝑎) 
= 𝐶𝑉𝑆𝑆 𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝐶𝑉𝑆𝑆 𝑆𝑐𝑜𝑟𝑒(𝑠), 𝐴𝑡𝑡𝑎𝑐𝑘 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑎))

Where CVSS Score(s) represents the CVSS score of state s,
and Attack Likelihood}(a) is the likelihood of the attack a.

Procedure:

• Develop a mapping function to translate CVSS scores
into reinforcement learning-compatible reward values.

• Integrate CVSS-based rewards into the Q-learning
process, adapting the DQN to prioritize actions with
higher security impact.

IV. REINFORCEMENT LEARNING IN INTELLIGENT

DECISION-MAKING PROCESSES

The exploration and analysis of intelligent decision-making
processes are integral fields within computer science,
particularly in artificial intelligence (AI). Intelligent Automated
Penetration Testing Systems (IAPTS) are designed to
streamline penetration testing (PT) activities, aligning with
various intelligence-driven cybersecurity solutions. These
solutions encompass expert-oriented systems and electronic
devices employing maintenance-free methods [16]. Expert-
focused systems, including anti-virus (AV), firewall (FW),

detection and intrusion prevention systems (IDPS), and security
information and management presence (SIEM), rely on the
expertise of security professionals..

A. Integration of Reinforcement Learning in IAPTS

The integration of reinforcement learning (RL) techniques

has brought about changes in learning objectives, particularly

in sustainability, such as vulnerability assessment and PT [11].

Several reasons support the choice of IAPTS that supports RL:

i. Learning Benefits: Reinforcement encourages

continuous learning through interaction with the

environment.

ii. Learning as Reward: The system adjusts its behavior as

a reward, providing flexibility and the option to delay

rewards to achieve long-term goals.

iii. Improving the Learning Environment: Learning support

captures the characteristics of PT, including uncertainty

and complexity.

Reinforcement learning, a part of machine learning and

artificial intelligence, enables software developers to analyze

performance in specific contexts. Minimal feedback (reward)

is required for the agent to learn and change its behavior

regarding the interaction between the agent and the

environment [5]. Fig. 2 illustrates how reinforcement learning

enables employees to learn from interactions in the

environment and continually improve their decisions to adapt

to the future. Compared to traditional methods, reinforcement

learning methods provide better learning and reduce the need

for service manuals by adapting expert-driven systems with

machine learning. Additionally, reinforcement learning

remains an ongoing area of research, with recent algorithmic

developments and effective tools proving the effectiveness of

solving complex learning problems in limited

resources [17], [18].

Fig. 2: Reinforcement learning interaction

B. POMDP Modeling of PT: Enhancing Testing Efficiency

In the context of PT, an attack consists of many tasks

performed manually by the human tester or the PT platform.

These periodic activities aim to meet defined or unknown goals

(goals), which may be physical or content-based, including

programs, computers, or information stored on computers. The

nature of the target during the attack adds to the difficulty. The

first challenge is to create a PT system that optimizes testing,

coverage, and reliability within a limited time frame.

Abdul Samad, Saad Altaf, M. Junaid Arshad 32

i. Preliminary Study Using POMDP Modeling: A preliminary

study utilizes the partial Perceptual Markov Decision

Process (POMDP) model for PT. POMDP stands for the

proxy to an unknown destination. The POMDP set is

represented as M = { S, A, O, T, Ω , R, 𝑏1} consisting of

states (S), actions (A), and observations (O). Random state

transitions are controlled by the function 𝑇 :  𝑆  ×  𝐴  ×
 𝑆  ⟶  [0,1] . Reinforcement learning helps improve the

efficiency, effectiveness, and reliability of PT systems

according to research objectives [12]. The POMDP model

forms the basis of the RL-based PT control system by

determining the interaction between the agent and the

environment in which the agent works, is evaluated, and

receives rewards [12]. The previous discussion [12]

explains the rationale behind this model choice, and the next

section provides more information [17], [18].

ii. POMDP Modeling of PT: In the PT context, an attack

comprises a series of tasks executed either manually by a

human tester or through a PT platform. These activities,

performed periodically, aim to achieve predetermined or

unknown goals (referred to as targets). Targets may be

logical or physical entities, encompassing computers,

computer networks, or information stored on computers.

The dynamic nature of attack targets during an attack adds

a layer of complexity. The overarching challenge lies in

developing a PT system that optimizes testing efficiency,

coverage, and reliability within specified time constraints.

The initial study adopts Partially Observable Markov

Decision Process (POMDP) modeling for PT. POMDP

represents an agent navigating an uncertain environment.

The POMDP set, denoted as M = { S, A, O, T, , R, },

encompasses states (S), actions (A), and observations

(O). Stochastic state transitions are governed by the

function 𝑇 :  𝑆  ×  𝐴  ×  𝑆  ⟶  [0,1].Reinforcement learning

is employed to enhance the efficiency, effectiveness, and

reliability of the PT system, aligning with the research

objectives [12]. The POMDP model elucidates the

interaction between the agent and the environment, as

agents execute actions, receive evaluations, and garner

rewards, forming the bedrock of RL-led PT system

management [12]. The rationale behind this modeling

choice has been expounded upon in previous discussions

[12], with further insights provided in subsequent sections

[17], [18].

Fig. 3: Attack trees generation

V. RESULTS AND DISCUSSION

We utilized Shodan-acquired data to initialize details
regarding vulnerabilities, open ports, products, and protocols
associated with both the web server and the file server.
Regarding the workstation, we assumed it operates without
hosting services, relying solely on different transfer protocols.

A. Identification of Vulnerabilities

In the realm of automated penetration testing using

reinforcement learning (APTS), datasets like these serve as

invaluable building blocks. Each entry, pairing a hardware

component with a known vulnerability, forms a training

instance for the APTS model (Table I).

Table I: Types of vulnerabilities

Hardware Vulnerability List

Web server

First subnet

Second subnet

File-server

CVE-2020-1198

CVE-2016-0189

CVE-2020-1380

CVE-2010-0492

B. Generation of Attack Graph

Utilizing the Mulval system, an attack graph for the studied
computer system is produced. The attack graph features vertices
representing system configuration, potential privileges, and
preconditions/postconditions.

C. Refinement of Attack Graph

The attack graph is further refined through algorithms

developed by the authors. The refinement involves modeling

with deep reinforcement learning, considering the location of

the agent, vulnerabilities, and attacker targets as vertices.

D. Automated Penetration Testing Model

The automated penetration testing method incorporates the

Common Vulnerability Scoring System (CVSS) to assign

rewards based on vulnerability exploitation with the rewarded

Deep Q-Learning (DQL) model. For instance, a simulated

scenario starting from a node, providing options for the

malicious agent to either reach the target node for a reward of

100 or return to the starting position.

E. Generalized Matrix of States

A generalized matrix of states with States/Actions (S/A) is

formed to illustrate the transition between agent nodes and

associated bonuses. Table II represents the states and actions,

providing insights into the attacker's behavior.

Table II: Generalized matrix of states

S/A 12 13 21 25 43 4 15 23 34

12 -1 7 8 9 6 -1 -1 -1 -1

13 0 -1 -1 -1 -1 100 -1 -1 -1

21 0 -1 -1 -1 -1 -1 100 -1 -1

...

International Journal of Computer Science and Telecommunications [Volume 15, Issue 1, March 2024] 33

F. Submatrix of State Clarifications

A submatrix is derived from the state matrix, providing state

clarifications and additional bonuses. Table III illustrates this

submatrix.

Table III: Submatrix of state clarifications

Submatrix 12 13 21 25 43 4

12 -1 7 8 9 6 -1

13 0 -1 -1 -1 -1 100

...

G. Bonuses Diagram

Utilizing the submatrix, a diagram of bonuses to the attacker

agent is formed for a specified goal for transitioning to target

state 1.

H. Practical Examples

Table IV provides practical examples of results obtained

through the automated penetration testing method, showcasing

the maximum rewards for different attacker node simulations

targeting various goals in the computer system.

Table IV: Automated penetration testing method result

Attacker Node

Simulator

Target Maximum Reward

12 4 908

12 15 907

12 23 906

12 34 906

VI. CONCLUSIONS

A novel method for automated penetration testing has been
devised, featuring an innovative integration of the Shodan
search engine, MulVal network security analysis platform, and
software vulnerability data (CVE). This integration facilitates
the acquisition of input data, enabling the construction of
realistic attack scenarios validated through deep reinforcement
learning technology.

The method's key strength lies in its ability to generate attack
trees for diverse training procedures and optimize
corresponding scripts for automated software security testing.
The deep reinforcement learning approach leverages reward
scores assigned to each node based on the Common
Vulnerability Scoring System (CVSS) rating. This enables the
reduction of attack trees, pinpointing attacks with higher
probabilities of occurrence.

To evaluate the method's practicality, an experiment was
conducted, resulting in the generation of an attack tree and the
formulation of testing and training scenarios. Notably, the
simulation results achieved a 0.9 accuracy in determining the
most rational attack path, even with a limited number of training
scenarios.

The developed method emerges as an effective solution for
software security analysis, providing testers with the flexibility
to adopt ethical hacking practices and implement strategies to
mitigate potential negative impacts of cyberattacks..

REFERENCES

[1] Sarraute, C. Automated attack planning. Available online:
https://arxiv.org/abs/1307.7808.

[2] Creasey, J.; Glover, I. A guide for Running an Effective
Penetration Testing Program; CREST Publication: Slough, UK,
2017. Available online: http://www.crest-approved.org.

[3] Sutton, R.S.; Barto, A.G. Reinforcement Learning: An
Introduction; MIT Press: Cambridge, MA, USA, 2018.

[4] Almubairik, N.; Wills, G. Automated penetration testing based
on a threat model. In Proceedings of the 11th International
Conference for Internet Technologies and Secured
Transactions, ICITST, Barcelona, Spain, 5–7 December 2016.

[5] Veeramachaneni, K.; Arnaldo, I.; Cuesta-Infante, A.; Korrapati,
V.; Bassias, C.; Li, K. AI2: Training a Big Data Machine to
Defend; CSAIL, MIT Cambridge: Cambridge, MA, USA, 2016.

[6] Hoffmann, J. Simulated penetration testing: From Dijkstra to
aaTuring Test++. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling, Israel, 7–
11 June 2015.

[7] Heinl, C. Artificial (intelligent) agents and active cyber defence:
Policy implications. In Proceedings of the 6th International
Conference On Cyber Conflict (CyCon 2014), Tallinn, Estonia,
3–6 June 2014.

[8] Walraven, E.; Spaan, M. Point-Based Value Iteration for Finite-
Horizon POMDPs. J. Artif. Intell. Res. 2019, 65, 307–341.

[9] Sarraute, C.; Buffet, O.; Hoffmann, J. POMDPs make better
hackers: Accounting for uncertainty in penetration testing.
Available online: https://arxiv.org/abs/1307.8182 (accessed on
20 December 2019).

[10] Ghanem, M.; Chen, T. Reinforcement Learning for Intelligent
Penetration Testing. In Proceedings of the WS4 the World
Conference on Smart Trends in Systems, Security and
Sustainability, London, UK, 30–31 October 2018.

[11] Backes, M.; Hoffmann, J.; Kunnemann, R.; Speicher, P.;
Steinmetz, M. Simulated Penetration Testing and Mitigation
Analysis. arXiv 2017, arXiv:1705.05088.

[12] Durkota, K.; Lisy, V.; Bosansk, B.; Kiekintveld, C. Optimal
network security hardening using attack graph games. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI-2015), Buenos Aires, Argentina,
25–31 July 2015.

[13] Obes, J.; Richarte, G.; Sarraute, C. Attack planning in the real
world. arXiv 2013, arXiv:1306.4044.

[14] Meuleau, N.; Kim, K.; Kaelbling, L.; Cassandra, A. Solving
POMDPs by searching the space of finite policies. In
Proceedings of the 15th Conference on Uncertainty in Artificial
Intelligence, Bellevue, WA, USA, 11–15 July 2013.

[15] Spaan, M. Partially Observable Markov Decision Processes,
Reinforcement Learning: State of the Art; Springer:
Berlin/Heidelberg, Germany, 2012.

[16] Sarraute, C.; Richarte, G.; Hoffmann, J. Simulated penetration
testing: From Dijkstra to aaTuring Test++. In Proceedings of
the 25th International Conference on Automated Planning and
Scheduling, Israel, 7–11 June 2015.

[17] Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized
experience replay, Google DeepMind. arXiv 2015,
arXiv:1511.05952.

[18] Grande, R.; Walsh, T.; How, J. Sample efficient reinforcement
learning with gaussian processes. In Proceedings of the
International Conference on Machine Learning, Beijing, China,
21–26 June 2014; pp. 1332–1340.

[19] Agrawal, S.; Jia, R. Optimistic posterior sampling for
reinforcement learning: Worst-case regret bounds. In
Proceedings of the Annual Conference on Neural Information

Abdul Samad, Saad Altaf, M. Junaid Arshad 34

Processing Systems, Long Beach, CA, USA, 4–9 December
2017; pp. 1184–1194.

[20] Keshri, A. What is Automated Penetration Testing? Difference
between Automatic \& Manual Pentesting. Available online:
https://www.getastra.com/blog/security-audit/automated-
penetration-testing/.

[21] Imperva. Penetration Testing. Available online:
https://www.imperva.com/learn/application-
security/penetration-testing/.

[22] Synopsys. Penetration Testing. Available online:
https://www.synopsys.com/glossary/what-is-penetration-
testing.html.

[23] Intersoft Consulting. General Data Protection Regulation
(GDPR). Available online: \url{https://gdpr-info.eu/.

