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Abstract—Penetration testing, commonly referred to as 

pretesting or PT, is a prevalent method for actively evaluating the 

security measures of a computer network. This involves planning 

and executing various attacks to identify and exploit existing 

vulnerabilities. Despite the continuous evolution of tools, current 

penetration testing methods are becoming increasingly non-

standard, intricate, and resource intensive.  In this paper, we 

propose and assess an innovative AI-driven pen-testing system 

named the Intelligent Automated Penetration Testing System 

(IAPTS). This system utilizes machine learning techniques, 

specifically Reinforcement Learning (RL), to comprehend and 

replicate both average and complex pen-testing activities. IAPTS 

comprises a module that seamlessly integrates with established PT 

frameworks, allowing it to capture information, learn from 

experiences, and replicate tests in subsequent similar testing 

scenarios. The primary objective of IAPTS is to optimize human 

resources while delivering significantly improved results in terms 

of time efficiency, reliability, and testing frequency. The approach 

taken by IAPTS involves modeling PT environments and tasks as 

a partially observed Markov decision process (POMDP) problem, 

which is effectively solved by a POMDP solver. Although the focus 

of this paper is limited to PT planning for network infrastructures 

and not the entire practice, the findings strongly support the 

hypothesis that RL can elevate PT capabilities beyond those of any 

human PT expert, particularly in terms of time efficiency, 

coverage of attack vectors, and the accuracy and reliability of 

outputs. Furthermore, this research addresses the intricate 

challenge of capturing and reusing expertise by empowering the 

IAPTS learning module to store and reuse PT policies. This 

mimics the learning process of a human PT expert but in a more 

efficient manner. 

 

Index Terms—Machine Learning, Software Security, 

Automated Penetration Testing, Attack Tree, Deep 

Reinforcement Learning a Deep Q-Learning Network 

 

I. INTRODUCTION 

N the contemporary landscape of computer networks, the 
escalating frequency, complexity, and sophistication of cyber 
threats have made them more vulnerable than ever. 

Penetration testing (often referred to as pen-testing or PT) has 
emerged as a proactive approach to assess the security of digital 
assets, ranging from individual computers to websites and 
networks [21], [22]. This method involves actively seeking and 

exploiting existing vulnerabilities, mirroring the operational 
mode employed by hackers in real-world cyber-attacks.  

In the evolving digital environment, PT has become a vital 
component of cybersecurity auditing, especially with the 
implementation of the European General Data Protection 
Regulation (GDPR) [23] for organizations. Besides meeting 
legal requirements, PT is recognized by the cybersecurity 
community as an effective means to evaluate the robustness of 
security defenses against skilled adversaries and to ensure 
adherence to security policies. The PT process, as depicted in 
Figure, unfolds in multiple stages, demanding a high level of 
competence due to the intricate nature of digital assets, such as 
medium to large networks. 

Efforts have been made in research to explore the potential of 
automated tools for different PT stages, including 
reconnaissance, identification, and exploitation. However, 
while automation can alleviate the burden of repetitive tasks, PT 
remains a dynamic and interactive process, requiring advanced 
cognitive skills that are challenging to replicate through 
automation.  

The question arises as to whether Artificial Intelligence (AI) 
can go beyond simple automation and provide expert-like 
output. AI, particularly in the sub-field of machine learning 
(ML), has shown promise in offloading work from humans and 
handling details that humans may struggle to manage quickly or 
accurately. The rapid progress in AI and ML leads to the belief 
that an AI-based PT system, employing well-established models 
 
 

 
 

Fig. 1: Stages of Penetration Testing 
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and algorithms for sequential decision-making in uncertain 
environments, can bridge the gap between automation and 
expertise in the PT community.  

Existing PT systems and frameworks are evolving towards 
becoming more autonomous, intelligent, and optimized[20]. 
The goal is to systematically and efficiently check all existing 
threats without heavy human intervention. Moreover, these 
systems should optimize resource utilization by eliminating 
time-consuming and irrelevant directions, ensuring that no 
threat is overlooked.  

Beyond the execution of PT, the testing results need to be 
processed and stored for further use. Unlike human PT experts 
who continuously learn from tests and enrich their expertise, 
automated systems often lack reusability of data. This becomes 
crucial, especially in scenarios like regular compliance tests, 
where the testing is repeated. In practical terms, as network 
configurations often remain relatively stable, the output of 
previous tests could be applicable for eventual re-testing 
triggered by specific changes, such as network modifications, 
system upgrades, or security policy modifications.  

Automation is deemed the optimal solution to save time and 
resources in various domains, and PT is no exception. The 
offensive cybersecurity community has significantly focused on 
automation in the past decade, leading to notable improvements 
in task efficiency. However, considering the unique challenges 
of PT, including the growing size and complexity of assets and 
the multitude of vulnerabilities to be covered, blind automated 
systems may fall short and perform worse than manual 
practices. Consequently, researchers are exploring ways to 
enhance such systems by adopting diverse solutions.  

This paper delves into the thorough design and development 
of an ML-based PT system. The objective is to conduct 
intelligent, optimized, and efficient testing by autonomously 
perceiving its environment and deciding how to act in PT tasks, 
akin to human experts. The envisioned outcome is a system that 
not only saves time and resources but also enhances accuracy, 
testing coverage, and frequency.   

II. LITERATURE REVIEW 

This world is based on multidisciplinary research focused on 
the performance and optimization of network security 
assessment methods, specifically Vulnerability Assessment 
(VA) and Perception Testing (PT). The main points from the 
study and accepted practices are summarized, with initial 
emphasis on the planning phase, use in the PT industry, and 
research. In the realm of PT automation and augmentation, 
research has explored various axes in the cybersecurity and 
artificial intelligence field. Early studies modeled PTs as shot 
charts and decision trees, constructing them as sequential 
decision processes, but these approaches are prone to poor 
evaluation [8], [9]. 

Automating PT tasks is a recommended strategy for effective 
PT work, but full automation without optimization or 
prioritization often requires human supervision, particularly in 
large and medium-sized assets. Blind automation can lead to 
problems such as long-term testing, vulnerabilities in network 
connections, and security solution compromises. Previous 
research primarily focused on optimizing the planning phase but 
faced scalability limitations in larger networks. A notable work 
introduced a PT model based on Planning Language 
Description (PDDL) to handle attack and post-attack scenarios, 

albeit limited to small and medium-sized networks. Some 
studies explored how intelligence could enhance physical 
training, but uncertainty in physical training remains a 
challenge. An exception is the integration of ML algorithms into 
Core-Impact PT and VA systems, although it does not model 
the full PT application [6], [11]. 

Automating PT tasks is a recommended strategy for effective 
PT work, but full automation without optimization or 
prioritization often requires human supervision, particularly in 
large and medium-sized assets. Blind automation can lead to 
problems such as long-term testing, vulnerabilities in network 
connections, and security solution compromises. Previous 
research primarily focused on optimizing the planning phase but 
faced scalability limitations in larger networks. A notable work 
introduced a PT model based on Planning Language 
Description (PDDL) to handle attack and post-attack scenarios, 
albeit limited to small and medium-sized networks. Some 
studies explored how intelligence could enhance physical 
training, but uncertainty in physical training remains a 
challenge. An exception is the integration of ML algorithms into 
Core-Impact PT and VA systems, although it does not model 
the full PT application [6], [12].  

Despite theoretical advances, penetration testing is associated 
with slow-running routine operations in large networks. 
Solutions often falter, as evidenced by ongoing challenges in PT 
implementation, including time and resource limitations. 
Human capabilities are proven to be limited compared to 
machines for many tasks, especially given modern computing 
resources. An average access test takes a significant amount of 
time, ranging from a few days to weeks for testing the average 
LAN [13], [14]. 

III. METHODOLOGY 

The study focused on assessing the Shadov system's 

capability in gathering factual data for designing attack trees 

and the Mulval platform for generating attack trees. A novel 

approach involved the development of a method to create a 

cyber intrusion matrix using the Mulval tool. Additionally, 

enhancements were made to the Deep Q-Learning Network 

method for analyzing the matrix and determining optimal 

attack trajectories. The study employed the deep reinforcement 

learning method, utilizing reward scores based on CVSS 

ratings for each node. This approach facilitated the reduction 

of attack trees and improved the identification of high-

probability attacks. The comparative analysis included 

automated penetration testing methods, revealing practical 

implications for enhancing computer system security through 

the developed methodology. 

A. Dynamic Cyber Intrusion Matrix Formation 

Objective: Construct a dynamic matrix to represent cyber 
intrusions that evolve with real-time data. 

Equation 1: 

𝑇ℎ𝑟𝑒𝑎𝑡 𝑀𝑎𝑡𝑟𝑖𝑥𝑖,𝑗(𝑡)  =  𝑀𝑢𝑙𝑣𝑎𝑙 (𝑆ℎ𝑎𝑑𝑜𝑣 (𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑖,𝑗  (𝑡))) 

Where Dataseti,j (t) denotes the dataset at time t for intrusion 

types i and j, and Mulval and Shadov represent functions of 
Mulval platform and Shadov system, respectively. 
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Procedure:  

• Continuously update the threat matrix based on real-time 
data, ensuring a dynamic representation of emerging 
threats. 

• Integrate temporal aspects and attack paths to enhance 
the matrix's descriptive power. 

B. Reinforcement Learning-based Attack Tree Optimization 

Objective: Optimize attack trees for automated penetration 
testing using a Deep Q-Learning Network (DQN). 

Equation 2: 

(𝑄(𝑠, 𝑎)  =  (1  −  𝛼). 𝑄(𝑠, 𝑎) 

+  𝛼 (𝑅(𝑠, 𝑎)  +  𝛾 .   max(𝑄(𝑠′, 𝑎′)))) 

Where Q(s,a) is the Q-value for state-action pair (s,a), R(s,a) 
is the reward, α is the learning rate, γ is the discount factor, and 
s' is the next state. 

Procedure:  

• Train the DQN using the dynamic threat matrix, 
updating Q-values based on the received rewards and 
predicted future rewards. 

• Incorporate temporal aspects and severity scores from 
CVSS ratings into the reward assignment process. 

C. CVSS-based Reward Assignment and Adaptation 

Objective: Enhance the DQN's understanding of cyber 
threats by incorporating Common Vulnerability Scoring System 
(CVSS) ratings. 

Equation 3: 

𝑄(𝑠, 𝑎) 
= 𝐶𝑉𝑆𝑆 𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝐶𝑉𝑆𝑆 𝑆𝑐𝑜𝑟𝑒(𝑠), 𝐴𝑡𝑡𝑎𝑐𝑘 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑎)) 

Where CVSS Score(s) represents the CVSS score of state s, 
and Attack Likelihood}(a) is the likelihood of the attack a. 

Procedure:  

• Develop a mapping function to translate CVSS scores 
into reinforcement learning-compatible reward values. 

• Integrate CVSS-based rewards into the Q-learning 
process, adapting the DQN to prioritize actions with 
higher security impact. 

IV. REINFORCEMENT LEARNING IN INTELLIGENT          

DECISION-MAKING PROCESSES 

The exploration and analysis of intelligent decision-making 
processes are integral fields within computer science, 
particularly in artificial intelligence (AI). Intelligent Automated 
Penetration Testing Systems (IAPTS) are designed to 
streamline penetration testing (PT) activities, aligning with 
various intelligence-driven cybersecurity solutions. These 
solutions encompass expert-oriented systems and electronic 
devices employing maintenance-free methods [16]. Expert-
focused systems, including anti-virus (AV), firewall (FW), 

detection and intrusion prevention systems (IDPS), and security 
information and management presence (SIEM), rely on the 
expertise of security professionals.. 

A. Integration of Reinforcement Learning in IAPTS 

The integration of reinforcement learning (RL) techniques 

has brought about changes in learning objectives, particularly 

in sustainability, such as vulnerability assessment and PT [11]. 

Several reasons support the choice of IAPTS that supports RL: 

i. Learning Benefits: Reinforcement encourages 

continuous learning through interaction with the 

environment. 

ii. Learning as Reward: The system adjusts its behavior as 

a reward, providing flexibility and the option to delay 

rewards to achieve long-term goals. 

iii. Improving the Learning Environment: Learning support 

captures the characteristics of PT, including uncertainty 

and complexity. 

 

Reinforcement learning, a part of machine learning and 

artificial intelligence, enables software developers to analyze 

performance in specific contexts. Minimal feedback (reward) 

is required for the agent to learn and change its behavior 

regarding the interaction between the agent and the 

environment [5]. Fig. 2 illustrates how reinforcement learning 

enables employees to learn from interactions in the 

environment and continually improve their decisions to adapt 

to the future. Compared to traditional methods, reinforcement 

learning methods provide better learning and reduce the need 

for service manuals by adapting expert-driven systems with 

machine learning. Additionally, reinforcement learning 

remains an ongoing area of research, with recent algorithmic 

developments and effective tools proving the effectiveness of 

solving complex learning problems in limited                                     

resources [17], [18]. 

 

 
 

Fig. 2: Reinforcement learning interaction 

 

B. POMDP Modeling of PT: Enhancing Testing Efficiency 

In the context of PT, an attack consists of many tasks 

performed manually by the human tester or the PT platform. 

These periodic activities aim to meet defined or unknown goals 

(goals), which may be physical or content-based, including 

programs, computers, or information stored on computers. The 

nature of the target during the attack adds to the difficulty. The 

first challenge is to create a PT system that optimizes testing, 

coverage, and reliability within a limited time frame. 
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i. Preliminary Study Using POMDP Modeling: A preliminary 

study utilizes the partial Perceptual Markov Decision 

Process (POMDP) model for PT. POMDP stands for the 

proxy to an unknown destination. The POMDP set is 

represented as M = { S, A, O, T, Ω , R, 𝑏1} consisting of 

states (S), actions (A), and observations (O). Random state 

transitions are controlled by the function 𝑇 :  𝑆  ×  𝐴  ×
 𝑆  ⟶  [0,1] . Reinforcement learning helps improve the 

efficiency, effectiveness, and reliability of PT systems 

according to research objectives [12]. The POMDP model 

forms the basis of the RL-based PT control system by 

determining the interaction between the agent and the 

environment in which the agent works, is evaluated, and 

receives rewards [12]. The previous discussion [12] 

explains the rationale behind this model choice, and the next 

section provides more information [17], [18]. 

ii. POMDP Modeling of PT: In the PT context, an attack 

comprises a series of tasks executed either manually by a 

human tester or through a PT platform. These activities, 

performed periodically, aim to achieve predetermined or 

unknown goals (referred to as targets). Targets may be 

logical or physical entities, encompassing computers, 

computer networks, or information stored on computers. 

The dynamic nature of attack targets during an attack adds 

a layer of complexity. The overarching challenge lies in 

developing a PT system that optimizes testing efficiency, 

coverage, and reliability within specified time constraints. 

The initial study adopts Partially Observable Markov 

Decision Process (POMDP) modeling for PT. POMDP 

represents an agent navigating an uncertain environment. 

The POMDP set, denoted as M = { S, A, O, T, , R, }, 

encompasses states ($S$), actions ($A$), and observations 

($O$). Stochastic state transitions are governed by the 

function 𝑇 :  𝑆  ×  𝐴  ×  𝑆  ⟶  [0,1].Reinforcement learning 

is employed to enhance the efficiency, effectiveness, and 

reliability of the PT system, aligning with the research 

objectives [12]. The POMDP model elucidates the 

interaction between the agent and the environment, as 

agents execute actions, receive evaluations, and garner 

rewards, forming the bedrock of RL-led PT system 

management [12]. The rationale behind this modeling 

choice has been expounded upon in previous discussions 

[12], with further insights provided in subsequent sections 

[17], [18]. 

 

 
 

Fig. 3: Attack trees generation 

V. RESULTS AND DISCUSSION 

We utilized Shodan-acquired data to initialize details 
regarding vulnerabilities, open ports, products, and protocols 
associated with both the web server and the file server. 
Regarding the workstation, we assumed it operates without 
hosting services, relying solely on different transfer protocols. 

A. Identification of Vulnerabilities 

In the realm of automated penetration testing using 

reinforcement learning (APTS), datasets like these serve as 

invaluable building blocks. Each entry, pairing a hardware 

component with a known vulnerability, forms a training 

instance for the APTS model (Table I). 

 
Table I: Types of vulnerabilities 

 

Hardware Vulnerability List 

Web server 

First subnet 

Second subnet 

File-server 

CVE-2020-1198 

CVE-2016-0189 

CVE-2020-1380 

CVE-2010-0492 

B. Generation of Attack Graph 

Utilizing the Mulval system, an attack graph for the studied 
computer system is produced. The attack graph features vertices 
representing system configuration, potential privileges, and 
preconditions/postconditions. 

C. Refinement of Attack Graph 

The attack graph is further refined through algorithms 

developed by the authors. The refinement involves modeling 

with deep reinforcement learning, considering the location of 

the agent, vulnerabilities, and attacker targets as vertices. 

D. Automated Penetration Testing Model 

The automated penetration testing method incorporates the 

Common Vulnerability Scoring System (CVSS) to assign 

rewards based on vulnerability exploitation with the rewarded 

Deep Q-Learning (DQL) model. For instance, a simulated 

scenario starting from a node, providing options for the 

malicious agent to either reach the target node for a reward of 

100 or return to the starting position. 

E. Generalized Matrix of States 

A generalized matrix of states with States/Actions (S/A) is 

formed to illustrate the transition between agent nodes and 

associated bonuses. Table II represents the states and actions, 

providing insights into the attacker's behavior. 

 

Table II: Generalized matrix of states 

 
S/A 12 13 21 25 43 4 15 23 34 

12 -1 7 8 9 6 -1 -1 -1 -1 

13 0 -1 -1 -1 -1 100 -1 -1 -1 

21 0 -1 -1 -1 -1 -1 100 -1 -1 

... ... ... ... ... ... ... ... ... ... 
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F. Submatrix of State Clarifications 

A submatrix is derived from the state matrix, providing state 

clarifications and additional bonuses. Table III illustrates this 

submatrix. 

Table III: Submatrix of state clarifications 

 
Submatrix 12 13 21 25 43 4 

12 -1 7 8 9 6 -1 

13 0 -1 -1 -1 -1 100 

... ... ... ... ... ... ... 

G. Bonuses Diagram 

Utilizing the submatrix, a diagram of bonuses to the attacker 

agent is formed for a specified goal for transitioning to target 

state 1. 

H. Practical Examples 

Table IV provides practical examples of results obtained 

through the automated penetration testing method, showcasing 

the maximum rewards for different attacker node simulations 

targeting various goals in the computer system. 

 
Table IV: Automated penetration testing method result 

 
Attacker Node 

Simulator 

Target Maximum Reward 

12 4 908 

12 15 907 

12 23 906 

12 34 906 

VI.    CONCLUSIONS 

A novel method for automated penetration testing has been 
devised, featuring an innovative integration of the Shodan 
search engine, MulVal network security analysis platform, and 
software vulnerability data (CVE). This integration facilitates 
the acquisition of input data, enabling the construction of 
realistic attack scenarios validated through deep reinforcement 
learning technology. 

The method's key strength lies in its ability to generate attack 
trees for diverse training procedures and optimize 
corresponding scripts for automated software security testing. 
The deep reinforcement learning approach leverages reward 
scores assigned to each node based on the Common 
Vulnerability Scoring System (CVSS) rating. This enables the 
reduction of attack trees, pinpointing attacks with higher 
probabilities of occurrence. 

To evaluate the method's practicality, an experiment was 
conducted, resulting in the generation of an attack tree and the 
formulation of testing and training scenarios. Notably, the 
simulation results achieved a 0.9 accuracy in determining the 
most rational attack path, even with a limited number of training 
scenarios. 

The developed method emerges as an effective solution for 
software security analysis, providing testers with the flexibility 
to adopt ethical hacking practices and implement strategies to 
mitigate potential negative impacts of cyberattacks.. 
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