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Abstract– Web administration organizations are excellent at 

organizing creative applications for various Internet-based 

business arrangements. This paper uses two metaheuristic 

calculations, specifically Genetic Algorithm (GA) and Particle 

Swarm Optimization Algorithm (PSO), to handle QoS-based 

assistance organization issues. Quality of service has transformed 

into a fundamental issue in the administration of web 

administrations, given the significant number of administrations 

that outfit comparative usefulness yet with different qualities. 

This paper compares two popular optimization algorithms: 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 

To assess the performance of the two algorithms, they are tested 

on two well-known benchmark functions and two engineering 

optimization problems, namely, the welding sequence problem 

and the design optimization of a truss structure. The results 

indicate that both algorithms can find the optimal global solutions 

for the benchmark functions, but PSO shows a better accuracy 

and faster convergence speed. However, when applied to 

engineering optimization problems, the superiority of PSO is not 

as evident. GA demonstrates better performance in finding the 

optimal solution with fewer evaluations. The authors conclude 

that selecting the appropriate algorithm for solving an 

optimization problem depends on the specific characteristics of 

the problem, such as the number of variables, the complexity of 

the objective function, and the constraints. 

 

Index Terms– Genetic Algorithm, Particle Swarm 

Optimization Algorithm, Workflow, Saas, Iaas, Paas, Quality of 

Service, IoT, Service Composition and Workflow Applications 

 

I.     INTRODUCTION 

HE need for processing and large storage capacity is 

rapidly increasing. As a result of high computing services 

and facilities given to customers (SaaS), (IaaS), and 

(PaaS), cloud computing attracts attention (PaaS). Multiple 

applications may be described as workflow applications and a 

bunch of tasks having multiple dependencies among them, in this 

way that dependent tasks must finish their execution first before 

one task can run [1]. Workflow applications are employed in 

various fields, including astronomy, bioinformatics, and 

catastrophe modeling and prediction. Furthermore, complex 

challenges, such as sophisticated scientific applications, have 

lately emerged due to combining various methodologies and 

techniques into a single solution. Fortunately, with the rise of 

cloud computing, similar workflow applications may now be run 

remotely [3].  

Depending on some technical rules, from one job to the next, 

to attain a general purpose, the activities in the workflow 

application are interdependent, with one task's output 

becoming the input of another. As a result, when allocating 

tasks to Virtual Machine processors, particularly in a 

multiprocessor environment, the order in which they are 

executed must be considered [6]. The workflow application 

scheduling processes are a multi-objective optimization 

challenge. Consumers may seek to reduce the throughout cost 

of the application—the time it takes to execute it by utilizing 

effective load balancing among Virtual Machines in a cloud 

environment. The trade-off between the three objectives is the 

best decision for multi-objective workflow optimization. As a 

result, consumers must value the objectives to identify the best 

Pareto solutions. The total cost may lead to maximum 

execution time and load on a single virtual machine. [7, 8]. The 

problem of a workflow scheduling is a classic challenge, 

especially from heterogeneous computing settings, for which 

several research initiatives to address the scheduling problem 

have been performed [9]–[11]. However, computing 

environments that are heterogeneous are challenging when 

configuring, and their potential to deliver more consistent 

performance with fewer failures is restricted compared to cloud 

computing environments [12], [13]. Furthermore, the primary 

goal is to get the algorithm with the highest efficiency and less 

completion time.  

This paper aims to introduce a comparative analysis between 

GA and PSO Algorithm, resulting in the best solution overall. 

Both algorithms should run a benchmark test to calculate the 

execution time and load balancing over the VMs with a 

minimum overall cost. 

II.    RELATED WORK 

The IoT is coursed, flexible, significantly novel, conflicting 

w ith new things, and individual things going this way and that 

from the IoT. Organizational synthesis is one of the best 

significant issues in IoT. Li et al. [21] have kept an eye on the 

assisting course of action with giving using Multicriteria 

considering the quality of service limits. This computation 

contemplates a piece of the quality of service limits to find the 

ideal response for assistance with organizing issues.  
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The challenge we face while planning the energy-productive 

calculation is dealing Cloud-based applications enable the 

coordination of diverse devices with differing functionalities, 

ensuring seamless interoperability among them. Fortino et al. 

[25] proposed a specialist-based undeniable level plan for IoT-

based frameworks. They stressed using mists to add high 

computational capacity to IoT frameworks. It also supported 

decentralized and dynamic systems. Chen et al. [26] made 

sense of a trust-the-board convention that upholds versatility 

and flexibility. It supports IoT frameworks based on service-

oriented architecture (SOA) and has implemented a filtering 

approach to monitor responses from IoT hub devices that share 

common interests. The social bond is structured according to 

social similarity, with companionship, social contact, and 

shared community interests in order of priority. Additionally, 

a mobile channel is utilized to showcase entertainment 

options, and the flexible IoT trust is demonstrated to be 

superior to both EigenTrust and PeerTrust 

Multiple suppliers' administrations on the cloud can be 

consolidated according to the requirements of the client 

bringing about SC issues. Kurdi et al. [22] have resolved the 

problem of managing and developing applications in multi-

cloud environments. He has proposed the Multi Cuckoo 

calculation utilizing an exploratory system. Comparing 

Particle Swarm Optimization and Genetic Algorithm, PSO has 

performed well in several cases and is efficient and less time-

consuming. The utilization of the cloud is to offer support to 

the client independent of its geological area. 

III.    ALGORITHMS & THEIR WORKING PRINCIPLES 

Genetic Algorithm 

As the era of cloud computing emerges, the optimization 

issue is rising. Optimization can only be improved by using 

the assets according to the need and in the best efficient 

method. This refers to maximizing or limiting qualities based 

on a function that, in a particular situation, is also referred to 

as an objective function from the range of available 

attributes. This refers to maximizing or limiting rates based 

on a process that, in a particular situation, is also referred to 

as an objective function from the range of available qualities. 

There are precisely two types of traits: positive and negative. 

Positive should be emphasized, while negative should be 

kept to a minimum. The Genetic Algorithm is one of the 

genetics-based artificial intelligence algorithms. The survival 

of the fittest is the fundamental tenet of this algorithm. Use it 

if the search area is significant because it is desirable. Over 

traditional optimization techniques, a genetic algorithm 

offers several advantages [23]. The fundamental idea of GA 

is based on genetics and revolves around the chromosomes 

and genetic architecture found in various cultures. GA 

encourages the survival of the fittest individuals in 

succeeding generations to tackle the issue. A collection of 

strings that resemble chromosomes can be found at every 

age. 

Every iteration represents a prospective solution that can 

be implemented based on the value found in the search space. 

Subsequent to that, the individuals in the population undergo 

evolutionary processes. The genes that exhibit superiority 

over the previous generations' mean are utilized to generate 

solutions for the next generation. The fitness values are 

evaluated to identify the optimal solution when the 

population converges to a state where no further offspring are 

produced beyond what the previous generation had. In the 

Genetic Algorithm (GA), every member of the population 

represents a feasible response to the problem being addressed 

in the solution. Each individual is distinct, described as a 

finite length variable within a selected range in a binary 

format. In the context of the genetic metaphor, these 

individuals are viewed as chromosomes, and the variables 

correspond to genes. Thus, a solution, or chromosome, in the 

GA consists of multiple genes. The fitness values are 

determined using the objective's exploitation and allocated to 

each response, representing a unique solution [34]. After that, 

the ideal fitness value is found; GA aims to utilize the 

specific "propagation" of arrangements with the goal that the 

upcoming children are higher than the parent. 

Steps for Applying Genetic Algorithm 

Step 1: Randomly initialize the population and name it “P”  

Step 2: Calculate the fitness score for P by utilizing an 

appropriate fitness function..  

Step 3: Persist until achieving the best possible fitness 

value. 

Step 4: Choose two parents and name them “P1” and “P2”..  

Step 5: By conducting parental crossover, a new population 

(P + 1) is generated. 

Step 6: Population (P + 1) is processed by the mutation 

operator.  

Step 7: Evaluate the fitness of the new population (P + 1), 

compare it with the current best fitness value, and if the 

obtained fitness value is superior, update the optimal 

solution accordingly. 

Particle Swarm Optimization Algorithm 

Kennedy and Eberhart created the particle swarm 

optimization (PSO) algorithm in 1995, A cognitive bionic 

system inspired by the study of bird predation behavior. 

Finding the best answer through group collaboration and 

knowledge exchange is the fundamental tenet of PSO. 

Specifically, the position and speed of each bird are considered 

as independent variables, while the value of the objective 

function is determined by the food density at the corresponding 

location where the bird arrives. Depending on the discrepancy 

between the best site for its previous search and the population 

history search, each search will modify the direction and pace 

of its inquiryUltimately, the complete swarm of birds can 

gather around the optimal position in the search space, resulting 

in either the identification of the ideal solution or the 

convergence of the problem.  

 

Some Advantages of the PSO Algorithm are listed down 

below: 

1. PSO has a tremendous global search capability and a very 

rapid computing speed compared to the conventional 

technique [24]. 

2. The population size does not impact training speed 
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because PSO is not sensitive. 

3. There are no constraints on the continuity, convexity, 

connectivity, or derivability of viable regions for the 

objective function, nor is it necessary to determine the 

function's gradient information when optimizing it. 

IV.    LITERATURE REVIEW 

The Genetic Algorithm (GA) is a nature-inspired search and 
optimization technique widely applied in various fields, 
including cloud computing. Within the context of cloud 
computing, Genetic Algorithms (GAs) have been employed to 
enhance resource allocation, scheduling, load balancing, and 
energy consumption. This is done to improve the efficiency of 
resource utilization and enable smooth execution of 
applications. An example of GA's application in cloud 
computing is virtual machine placement, where the allocation 
of virtual machines to physical servers is optimized based on 
resource usage, workload, and energy consumption. This 
optimization can help reduce costs and improve overall 
infrastructure performance. GA can also be used for load 
balancing to ensure that the load on different servers is 
balanced, enhancing cloud applications' response time and 
reliability. 

In this context, the GA algorithm's performance is primarily 
influenced by the solution encoding method, the fitness 
function employed, and the size of the population 
corresponding in number of iterations. Alajmi and Wright have 
shown that these parameter values significantly affect the 
algorithm's efficacy. In order to reduce complexity, the 
suggested approach employs the GA algorithm for the first half 
of the specified number of iterations. The optimal performance 
of the GA-PSO algorithm is attained when the iterations are 
equally divided between the GA and PSO algorithms. 

At each iteration, the GA operators, namely selection, 
crossover, and mutation, progressively enhance the 
chromosomes. These chromosomes, referred to as particles, 
are then fed into the PSO algorithm for the second half of the 
specified iterations and gradually refined in each iteration. The 
particle with the minimum fitness value represents the optimal 
solution for the workflow task problem. By running a few test 
trials, the algorithm's performance can be fine-tuned by 
adjusting the parameter values. Leveraging the GA-PSO 
algorithm in cloud computing has the potential to optimize 
resource utilization, reduce costs, and enhance the 
performance and dependability of cloud-based applications. 

A comparative study of multiple algorithms from multiple 
authors has been made that defines the algorithm's objective, 
advantages, and limitations. The table I draws fit results: 

 
 

Table 1: Shows research on PSO and GA Algorithm 

 
Authors Algorithms Objective Advantages  Limitations 

Braun et al. [15] Min-Min Algorithm Time 12%-14% more efficient than GA Slow in large  scale 

tasks
 

Kumar and Verma [19] The fusion of the min-min 

and max-min approaches 

within the context of the 

Genetic Algorithm 

Time speedy as compared to GA Time-consuming 

Guo et al. [20] Particle Swarm Optimization 

(PSO) algorithm Transfer time and 

execution 

More efficient than the M-PSO and 

L-PSO algorithms when dealing 

with large-scale problems 

Stuck in Local 

Optimal Solution 

Gen M. [23] 

 Heuristic Algorithm based 

on particle swarm 

optimization 

 

Time and cost It offers a cost reduction that is 

three times better than that of BRS 

and achieves a balanced distribution 

of the workload across available 

resources 

Stuck in the optimal 

local solution 

R.Xu [24] Heterogeneous Budget-

Constrained Scheduling 

(HBCS) algorithm 

 

Execution time and 

cost 

Achieving a 30% decrease in 

execution time without exceeding 

the allocated budget 

Not considering the 

load on resources 

A.Verma [19] 

 
Bicriteria Priority-Based 

Particle Swarm 

Optimization Algorithm 

 

Execution time and 

cost 

Reducing the execution expenses in 

contrast to BHEFT and PSO. 

Not considering the 

load on resources 

 

R.Xu. [24] Heuristic Algorithm based 

on the min-min Algorithm 

The fault  recovery, the 

time, and the cost 

The recovery from faults can greatly 

affect both performance criteria 

Better choice only 

when both cost and 

makespan are 

considered 
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The presentation of these algorithms relies upon wellness 

values. The environment in which multiple systems are 

attached plays a significant role in looking at the exhibition 

of the two algorithms. 

Particle swarm optimization (PSO) is a population-based 

optimization technique applied in various fields, including 

the Internet of Things (IoT). In IoT, PSO can be used to 

optimize resource allocation, energy consumption, and 

network performance. These tasks are essential in IoT, as 

they help ensure that devices efficiently utilize resources, 

conserve energy, and communicate effectively. One example 

of using PSO in IoT is sensor placement optimization. By 

using PSO, the placement of sensors in an IoT network can 

be optimized to achieve better coverage and reduce 

redundancy. This optimization can help conserve energy and 

improve the accuracy of data collection. PSO can also be 

used in routing optimization in IoT networks. Using PSO, the 

optimal route for data transmission can be determined based 

on factors such as energy consumption, signal strength, and 

congestion. This optimization can improve network 

performance and reduce energy consumption. Using PSO in 

IoT can help optimize resource utilization, conserve energy, 

and improve network performance. 

When GA creates poor solutions, the PSO Algorithm stores 

the best and worst solutions in memory, which might help with 

quick solution convergence. The GA-based scheduling 

algorithm represents the problem's scheduling solution through 

multiple chromosomes, each of which has a length equal to the 

total number of workflow jobs. The chromosomes consist of 

various genes that represent the virtual machines of the hosts. 

In each iteration, the GA applies three operators, namely 

selection, crossover, and mutation, to the chromosomes 

In this context, the Mutation Operator plays a crucial role. Its 

main objective is to introduce unpredictable changes to the new 

chromosomes generated by the previous crossover operator, 

resulting in chromosomes with a higher fitness value than the 

current ones. The Mutation Operator acts on the chromosome 

selected by the selection method, and its occurrence is 

determined by the mutation rate variable. At the beginning of 

the mutation process, a random number is generated, and if it 

is less than or equal to the mutation rate, the mutation operator 

is applied to the chromosome. Its ultimate goal is to create 

novel solutions that may improve the overall fitness of the 

population. 

In-Depth Comparison of GA & PSO Algorithm 

GA and PSO are population-based optimization algorithms 

that solve complex problems. Here is a comparison table of 

the GA and PSO algorithms (Table II): 

 
Table II: Shows multiple parameters of the PSO and GA Algorithm 

 
Parameter GA PSO 

Population size Large Small to medium 

Encoding scheme Binary or real-valued Real-valued 

Selection process Fitness-proportionate Best individuals 

Mutation operator Probability-based N/A 

Crossover operator Binary or real-valued Real-valued 

Particle updating N/A Based on personal and 

global best 

Search intensity Low to High Medium to high 

Convergence speed Slow Fast 

Exploration 

capability 

Low High 

Complexity High Low to medium 

 

S.Chitra [25] The PSO algorithm Calculate Load balance
 

Better than PSO and GA Time-consuming 

Y.Mao [18] The Genetic Algorithm Calculate Load balance
 

Superior to FIFO Time-Consuming to 

reach the optimal 

solution 

Fard et al. [28] The heuristic algorithm Calculate Energy 

consumption and 

reliability
 

More efficient The algorithm's 

efficiency may not be 

optimal when dealing 

with a small number 

of tasks and 

processes. 

Ge and Wei. [26] 

 

The algorithm known as 

Revised Discrete Particle 

Swarm Optimization 

(RDPSO). 

Determine the costs of 

communication and 

computation. 

The algorithm performs better than 

the PSO and BRS (Best Resource 

Selection) Algorithm. 

Inefficient in dealing 

with a large search 

space. 
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Fig. 1: Shows a flow chart diagram of the PSO and GA Algorithm [27]   

 

 

Performance Evaluation of Genetic Algorithm 

Genetic Algorithms (GAs) are popular optimization techniques that imitate the mechanism of natural selection to discover the 

best solution to a problem.. Performance evaluation of GA involves assessing its effectiveness in finding a near-optimal solution 

to a problem and its efficiency in terms of time and resources required. 

Here are some commonly used methods for the performance evaluation of GA: 

1. Fitness Function Analysis: The fitness function evaluates the degree to which a solution meets the requirements of the 

problem. Analyzing the fitness function helps in understanding the quality of solutions found by the GA 

2. Convergence Analysis: Analyzing the convergence of a GA involves evaluating how close the population is to reaching 

the optimal solution as the algorithm progresses. This analysis helps determine the number of iterations required to 

achieve a solution that satisfies the problem requirements. 

3. Parameter Tuning: The performance of GA is affected by the selection of various parameters, such as population size, 

mutation rate, and crossover rate. Tuning these parameters involves experimenting with different combinations to identify 

the most effective ones. 

4. Comparison with other algorithms: Assessing the performance of the GA can involve comparing its results with those of 

other optimization algorithms that solve the same problem. This allows for a fair comparison and helps to identify the 

strengths and weaknesses of GA. 

5. Scalability Analysis: GA performance can be evaluated by analyzing how it performs as the problem size increases. This 

helps to determine whether GA is scalable to more significant problems and whether it can maintain a reasonable level 

of performance as the problem becomes more complex. 

Overall, the performance evaluation of GA involves analyzing various aspects of the algorithm, including its ability to find 

reasonable solutions, convergence speed, parameter sensitivity, scalability, and comparison with other algorithms. 

Performance Evaluation of Particle Swarm Optimization (PSO) Algorithm 

The performance efficiency of the Particle Swarm Optimization (PSO) Algorithm can be evaluated based on the following 

factors: 

1. Convergence speed: The PSO algorithm's convergence speed is generally faster than other optimization algorithms. The 

algorithm quickly converges to an optimal solution using the swarm intelligence technique. 

2. The PSO algorithm's ability to obtain high-quality solutions relies on the fitness function used to assess those solutions. 

The PSO algorithm can provide high-quality solutions if the fitness function is well-defined and appropriate. 

3. Robustness: PSO algorithm is robust and can easily handle noisy and non-linear optimization problems. This makes it 

suitable for real-world applications with complex and dynamic optimization problems. 
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4. Scalability: The PSO algorithm can handle large and complex optimization problems by scaling up its swarm size and 

the number of iterations, thereby increasing its computational complexity.. 

5. Ease of implementation: PSO algorithm is relatively easy to implement and does not require a lot of computational 

resources. This makes it efficient for solving optimization problems in various domains. 

 

Fitness Tests between GA and PSO Algorithm 

 
 

PSO Parameters Genetic Parameters 

Swarm size: 30 Population size: 30 

Maximum number of generations: 200 Maximum number of generations: 200 

D1, D2=3.0, 3.0 Type of selection: normal geometric [0.09]  

Type of crossover: arithmetic [2] 

Wstart, Wend=0.9, 0.4    Type of mutation: non-uniform [2, 100, 3] 

 
 

Values PSO GA 

Best 500.7721 

 

496.321 

 

Average 512.1185 

 

507.112 

 

Worst 503.12 

 

515.71 

 

 
Table III: [27] Shows fitness Tests of the PSO and GA Algorithm 

 

 
 

Fig. 2: [27] Shows a flow chart diagram of the GA and PSO Algorithm 
 

 

 
Table IV: [27] Shows Workflows, Average Results, and Executed Experiments of the PSO and GA Algorithm 

 

The traits that define the workflows in Cloud Computing 

Scenes Tasks Edges Average Data Size (MB) 

Scene One 26 96 3.44 

Scene Two 51 207 3.37 

Scene Three 101 434 3.25 

Scene Four 1001 4486 3.23 

The algorithms were compared based on their average results in makes pan, execution cost, and load balancing 

Methods Avg Makes Avg Execution Time Avg Load Balance 

GA 799.131 451.331 74.591 

PSO 578.0671 353.741 42.8821 

Results of Executed Experiments 

Algorithm Make span Execution Cost ($) Load Balance (rate) 

Scenario One 

GA 197.651 52.682 52.584 

PSO 101-211 18.163 21.334 

Scenario Two 

GA 250.89 86.34 61.93 

PSO 155.31 62.86 18.23 
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Tabular Evaluation of Genetic Algorithm (GA) & Particle Swarm Optimization (PSO) Algorithm  

 
Table V: Shows a Tabular Evaluation of the PSO and GA Algorithm 

 
Evaluation Measures  Genetic Algorithm Particle Swarm Optimization 

Representation Binary string Vector 

Search Strategy Evolutionary Swarm-based 

Convergence High probability of global optimum but 

slower 

Faster but may get stuck in local optima 

Complexity Computationally expensive due to fitness 

evaluation 

Relatively simple and computationally efficient 

Parameter Tuning Many parameters, such as population size, 

mutation rate, and crossover rate 

Fewer parameters, such as swarm size and 

inertia weight 

Convergence speed Slow but a high probability of finding 

global optima 

Fast but may get stuck in local optima 

Exploration ability Strong due to diversity maintenance and 

mutation operation 

Moderate due to the stochastic search 

Exploitation ability Strong due to the selection and crossover 

operations 

Moderate due to relying on local and global 

best positions 

Scalability High due to population-based approach Limited due to swarm size limitation 

Complexity High due to the need for fitness function 

evaluation 

Low due to the simple update rule 

Parameter tuning The problem is complex due to the 

multitude of parameters involved, such as 

population size, crossover rate, and 

mutation rate. 

Simple with only a few parameters, such as 

swarm size and inertia weight 

Robustness Strong due to the diversity maintenance Moderate due to the stochastic search 

Applicability Wide range of optimization problems Suitable for continuous optimization problems 

Performance Comparable to other optimization 

algorithms 

Competitive with other optimization algorithms 

Convergence speed Slow but a high probability of finding 

global optima 

Fast but may get stuck in local optima 

Exploration ability Strong due to diversity maintenance and 

mutation operation 

Moderate due to the stochastic search 

Exploitation ability Strong due to the selection and crossover 

operations 

Moderate due to relying on local and global 

best positions 

Scalability High due to population-based approach Limited due to swarm size limitation 

 

 

V.    CONCLUSION 

GA and PSO are powerful optimization algorithms using 

different techniques to find the ideal scenario. GA uses the 

principles of natural selection and genetics to evolve a 

population of candidate solutions, while PSO uses a swarm 

of particles to search the solution space. In general, GA is 

more suitable for problems that involve discrete variables and 

combinatorial optimization, while PSO is more suitable for 

problems that involve continuous variables and multi-modal 

optimization. 

The results suggest that the PSO and GA algorithms are 

suitable for optimizing parameters. However, from an 

evolutionary standpoint, PSO outperforms GA in terms of 

performance. PSO exhibits faster convergence, requiring 

fewer generations to reach the final parameter values than 

GA. Furthermore, while PSO and GA show linear increases 

As the number of generations increases, the GA has a lower 

cumulative computational time than PSO. This is because of 

the communication that occurs between particles in PSO after 

each generation. It is worth noting that the success of these 

optimization techniques heavily depends on the selection of 

control parameters and objective functions, and choosing 

them appropriately is crucial. 

The hybridization of GA and PSO algorithms has resulted 

in a robust optimization technique that incorporates the 

strengths of both algorithms. GA utilizes natural selection 

and genetic operators to explore the solution space, while 

PSO imitates the behavior of bird flocks or fish schools to 

locate the global optimum. By combining these two 

algorithms, a hybrid algorithm is created that is more 

effective in handling complex optimization problems. In this 

approach, GA performs a population-based search, and PSO 

carries out a local search.  

This hybridization strategy increases the algorithm's 

exploration and exploitation capabilities by utilizing GA's 

global and PSO's local search ability. Furthermore, the 

hybrid algorithm can handle continuous and discrete 

optimization problems and is insensitive to the initial 

population, making it applicable to various real-world 

optimization problems. The PSO and hybrid GA algorithm is 

a widely accepted optimization technique that 
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comprehensively solves complex optimization problems. 
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