
International Journal of Computer Science and Telecommunications [Volume 14, Issue 2, June 2023] 1

Journal Homepage: www.ijcst.org

Sharjeel Tariq1, Muhammad Shahzad Ashraf Rana2, M. Junaid Arshad3

1,2,3Department of Computer Science, University of Engineering and Technology, Lahore

2022mscs225@student.uet.edu.pk, 2021mscs582@student.uet.edu.pk, mjunaiduet@gmail.com

Abstract– Web administration organizations are excellent at

organizing creative applications for various Internet-based

business arrangements. This paper uses two metaheuristic

calculations, specifically Genetic Algorithm (GA) and Particle

Swarm Optimization Algorithm (PSO), to handle QoS-based

assistance organization issues. Quality of service has transformed

into a fundamental issue in the administration of web

administrations, given the significant number of administrations

that outfit comparative usefulness yet with different qualities.

This paper compares two popular optimization algorithms:

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

To assess the performance of the two algorithms, they are tested

on two well-known benchmark functions and two engineering

optimization problems, namely, the welding sequence problem

and the design optimization of a truss structure. The results

indicate that both algorithms can find the optimal global solutions

for the benchmark functions, but PSO shows a better accuracy

and faster convergence speed. However, when applied to

engineering optimization problems, the superiority of PSO is not

as evident. GA demonstrates better performance in finding the

optimal solution with fewer evaluations. The authors conclude

that selecting the appropriate algorithm for solving an

optimization problem depends on the specific characteristics of

the problem, such as the number of variables, the complexity of

the objective function, and the constraints.

Index Terms– Genetic Algorithm, Particle Swarm

Optimization Algorithm, Workflow, Saas, Iaas, Paas, Quality of

Service, IoT, Service Composition and Workflow Applications

I. INTRODUCTION

HE need for processing and large storage capacity is

rapidly increasing. As a result of high computing services

and facilities given to customers (SaaS), (IaaS), and

(PaaS), cloud computing attracts attention (PaaS). Multiple

applications may be described as workflow applications and a

bunch of tasks having multiple dependencies among them, in this

way that dependent tasks must finish their execution first before

one task can run [1]. Workflow applications are employed in

various fields, including astronomy, bioinformatics, and

catastrophe modeling and prediction. Furthermore, complex

challenges, such as sophisticated scientific applications, have

lately emerged due to combining various methodologies and

techniques into a single solution. Fortunately, with the rise of

cloud computing, similar workflow applications may now be run

remotely [3].

Depending on some technical rules, from one job to the next,

to attain a general purpose, the activities in the workflow

application are interdependent, with one task's output

becoming the input of another. As a result, when allocating

tasks to Virtual Machine processors, particularly in a

multiprocessor environment, the order in which they are

executed must be considered [6]. The workflow application

scheduling processes are a multi-objective optimization

challenge. Consumers may seek to reduce the throughout cost

of the application—the time it takes to execute it by utilizing

effective load balancing among Virtual Machines in a cloud

environment. The trade-off between the three objectives is the

best decision for multi-objective workflow optimization. As a

result, consumers must value the objectives to identify the best

Pareto solutions. The total cost may lead to maximum

execution time and load on a single virtual machine. [7, 8]. The

problem of a workflow scheduling is a classic challenge,

especially from heterogeneous computing settings, for which

several research initiatives to address the scheduling problem

have been performed [9]–[11]. However, computing

environments that are heterogeneous are challenging when

configuring, and their potential to deliver more consistent

performance with fewer failures is restricted compared to cloud

computing environments [12], [13]. Furthermore, the primary

goal is to get the algorithm with the highest efficiency and less

completion time.

This paper aims to introduce a comparative analysis between

GA and PSO Algorithm, resulting in the best solution overall.

Both algorithms should run a benchmark test to calculate the

execution time and load balancing over the VMs with a

minimum overall cost.

II. RELATED WORK

The IoT is coursed, flexible, significantly novel, conflicting

w ith new things, and individual things going this way and that

from the IoT. Organizational synthesis is one of the best

significant issues in IoT. Li et al. [21] have kept an eye on the

assisting course of action with giving using Multicriteria

considering the quality of service limits. This computation

contemplates a piece of the quality of service limits to find the

ideal response for assistance with organizing issues.

T

A Comparative Study of GA and PSO Algorithm in

Cloud Computing and IoT Technology

ISSN 2047-3338

Sharjeel Tariq, Muhammad Shahzad Ashraf Rana, M. Junaid Arshad 2

The challenge we face while planning the energy-productive

calculation is dealing Cloud-based applications enable the

coordination of diverse devices with differing functionalities,

ensuring seamless interoperability among them. Fortino et al.

[25] proposed a specialist-based undeniable level plan for IoT-

based frameworks. They stressed using mists to add high

computational capacity to IoT frameworks. It also supported

decentralized and dynamic systems. Chen et al. [26] made

sense of a trust-the-board convention that upholds versatility

and flexibility. It supports IoT frameworks based on service-

oriented architecture (SOA) and has implemented a filtering

approach to monitor responses from IoT hub devices that share

common interests. The social bond is structured according to

social similarity, with companionship, social contact, and

shared community interests in order of priority. Additionally,

a mobile channel is utilized to showcase entertainment

options, and the flexible IoT trust is demonstrated to be

superior to both EigenTrust and PeerTrust

Multiple suppliers' administrations on the cloud can be

consolidated according to the requirements of the client

bringing about SC issues. Kurdi et al. [22] have resolved the

problem of managing and developing applications in multi-

cloud environments. He has proposed the Multi Cuckoo

calculation utilizing an exploratory system. Comparing

Particle Swarm Optimization and Genetic Algorithm, PSO has

performed well in several cases and is efficient and less time-

consuming. The utilization of the cloud is to offer support to

the client independent of its geological area.

III. ALGORITHMS & THEIR WORKING PRINCIPLES

Genetic Algorithm

As the era of cloud computing emerges, the optimization

issue is rising. Optimization can only be improved by using

the assets according to the need and in the best efficient

method. This refers to maximizing or limiting qualities based

on a function that, in a particular situation, is also referred to

as an objective function from the range of available

attributes. This refers to maximizing or limiting rates based

on a process that, in a particular situation, is also referred to

as an objective function from the range of available qualities.

There are precisely two types of traits: positive and negative.

Positive should be emphasized, while negative should be

kept to a minimum. The Genetic Algorithm is one of the

genetics-based artificial intelligence algorithms. The survival

of the fittest is the fundamental tenet of this algorithm. Use it

if the search area is significant because it is desirable. Over

traditional optimization techniques, a genetic algorithm

offers several advantages [23]. The fundamental idea of GA

is based on genetics and revolves around the chromosomes

and genetic architecture found in various cultures. GA

encourages the survival of the fittest individuals in

succeeding generations to tackle the issue. A collection of

strings that resemble chromosomes can be found at every

age.

Every iteration represents a prospective solution that can

be implemented based on the value found in the search space.

Subsequent to that, the individuals in the population undergo

evolutionary processes. The genes that exhibit superiority

over the previous generations' mean are utilized to generate

solutions for the next generation. The fitness values are

evaluated to identify the optimal solution when the

population converges to a state where no further offspring are

produced beyond what the previous generation had. In the

Genetic Algorithm (GA), every member of the population

represents a feasible response to the problem being addressed

in the solution. Each individual is distinct, described as a

finite length variable within a selected range in a binary

format. In the context of the genetic metaphor, these

individuals are viewed as chromosomes, and the variables

correspond to genes. Thus, a solution, or chromosome, in the

GA consists of multiple genes. The fitness values are

determined using the objective's exploitation and allocated to

each response, representing a unique solution [34]. After that,

the ideal fitness value is found; GA aims to utilize the

specific "propagation" of arrangements with the goal that the

upcoming children are higher than the parent.

Steps for Applying Genetic Algorithm

Step 1: Randomly initialize the population and name it “P”

Step 2: Calculate the fitness score for P by utilizing an

appropriate fitness function..

Step 3: Persist until achieving the best possible fitness

value.

Step 4: Choose two parents and name them “P1” and “P2”..

Step 5: By conducting parental crossover, a new population

(P + 1) is generated.

Step 6: Population (P + 1) is processed by the mutation

operator.

Step 7: Evaluate the fitness of the new population (P + 1),

compare it with the current best fitness value, and if the

obtained fitness value is superior, update the optimal

solution accordingly.

Particle Swarm Optimization Algorithm

Kennedy and Eberhart created the particle swarm

optimization (PSO) algorithm in 1995, A cognitive bionic

system inspired by the study of bird predation behavior.

Finding the best answer through group collaboration and

knowledge exchange is the fundamental tenet of PSO.

Specifically, the position and speed of each bird are considered

as independent variables, while the value of the objective

function is determined by the food density at the corresponding

location where the bird arrives. Depending on the discrepancy

between the best site for its previous search and the population

history search, each search will modify the direction and pace

of its inquiryUltimately, the complete swarm of birds can

gather around the optimal position in the search space, resulting

in either the identification of the ideal solution or the

convergence of the problem.

Some Advantages of the PSO Algorithm are listed down

below:

1. PSO has a tremendous global search capability and a very

rapid computing speed compared to the conventional

technique [24].

2. The population size does not impact training speed

International Journal of Computer Science and Telecommunications [Volume 14, Issue 2, June 2023] 3

because PSO is not sensitive.

3. There are no constraints on the continuity, convexity,

connectivity, or derivability of viable regions for the

objective function, nor is it necessary to determine the

function's gradient information when optimizing it.

IV. LITERATURE REVIEW

The Genetic Algorithm (GA) is a nature-inspired search and
optimization technique widely applied in various fields,
including cloud computing. Within the context of cloud
computing, Genetic Algorithms (GAs) have been employed to
enhance resource allocation, scheduling, load balancing, and
energy consumption. This is done to improve the efficiency of
resource utilization and enable smooth execution of
applications. An example of GA's application in cloud
computing is virtual machine placement, where the allocation
of virtual machines to physical servers is optimized based on
resource usage, workload, and energy consumption. This
optimization can help reduce costs and improve overall
infrastructure performance. GA can also be used for load
balancing to ensure that the load on different servers is
balanced, enhancing cloud applications' response time and
reliability.

In this context, the GA algorithm's performance is primarily
influenced by the solution encoding method, the fitness
function employed, and the size of the population
corresponding in number of iterations. Alajmi and Wright have
shown that these parameter values significantly affect the
algorithm's efficacy. In order to reduce complexity, the
suggested approach employs the GA algorithm for the first half
of the specified number of iterations. The optimal performance
of the GA-PSO algorithm is attained when the iterations are
equally divided between the GA and PSO algorithms.

At each iteration, the GA operators, namely selection,
crossover, and mutation, progressively enhance the
chromosomes. These chromosomes, referred to as particles,
are then fed into the PSO algorithm for the second half of the
specified iterations and gradually refined in each iteration. The
particle with the minimum fitness value represents the optimal
solution for the workflow task problem. By running a few test
trials, the algorithm's performance can be fine-tuned by
adjusting the parameter values. Leveraging the GA-PSO
algorithm in cloud computing has the potential to optimize
resource utilization, reduce costs, and enhance the
performance and dependability of cloud-based applications.

A comparative study of multiple algorithms from multiple
authors has been made that defines the algorithm's objective,
advantages, and limitations. The table I draws fit results:

Table 1: Shows research on PSO and GA Algorithm

Authors Algorithms Objective Advantages Limitations

Braun et al. [15] Min-Min Algorithm Time 12%-14% more efficient than GA Slow in large scale

tasks

Kumar and Verma [19] The fusion of the min-min

and max-min approaches

within the context of the

Genetic Algorithm

Time speedy as compared to GA Time-consuming

Guo et al. [20] Particle Swarm Optimization

(PSO) algorithm Transfer time and

execution

More efficient than the M-PSO and

L-PSO algorithms when dealing

with large-scale problems

Stuck in Local

Optimal Solution

Gen M. [23]

 Heuristic Algorithm based

on particle swarm

optimization

Time and cost It offers a cost reduction that is

three times better than that of BRS

and achieves a balanced distribution

of the workload across available

resources

Stuck in the optimal

local solution

R.Xu [24] Heterogeneous Budget-

Constrained Scheduling

(HBCS) algorithm

Execution time and

cost

Achieving a 30% decrease in

execution time without exceeding

the allocated budget

Not considering the

load on resources

A.Verma [19]

Bicriteria Priority-Based

Particle Swarm

Optimization Algorithm

Execution time and

cost

Reducing the execution expenses in

contrast to BHEFT and PSO.

Not considering the

load on resources

R.Xu. [24] Heuristic Algorithm based

on the min-min Algorithm

The fault recovery, the

time, and the cost

The recovery from faults can greatly

affect both performance criteria

Better choice only

when both cost and

makespan are

considered

Sharjeel Tariq, Muhammad Shahzad Ashraf Rana, M. Junaid Arshad 4

The presentation of these algorithms relies upon wellness

values. The environment in which multiple systems are

attached plays a significant role in looking at the exhibition

of the two algorithms.

Particle swarm optimization (PSO) is a population-based

optimization technique applied in various fields, including

the Internet of Things (IoT). In IoT, PSO can be used to

optimize resource allocation, energy consumption, and

network performance. These tasks are essential in IoT, as

they help ensure that devices efficiently utilize resources,

conserve energy, and communicate effectively. One example

of using PSO in IoT is sensor placement optimization. By

using PSO, the placement of sensors in an IoT network can

be optimized to achieve better coverage and reduce

redundancy. This optimization can help conserve energy and

improve the accuracy of data collection. PSO can also be

used in routing optimization in IoT networks. Using PSO, the

optimal route for data transmission can be determined based

on factors such as energy consumption, signal strength, and

congestion. This optimization can improve network

performance and reduce energy consumption. Using PSO in

IoT can help optimize resource utilization, conserve energy,

and improve network performance.

When GA creates poor solutions, the PSO Algorithm stores

the best and worst solutions in memory, which might help with

quick solution convergence. The GA-based scheduling

algorithm represents the problem's scheduling solution through

multiple chromosomes, each of which has a length equal to the

total number of workflow jobs. The chromosomes consist of

various genes that represent the virtual machines of the hosts.

In each iteration, the GA applies three operators, namely

selection, crossover, and mutation, to the chromosomes

In this context, the Mutation Operator plays a crucial role. Its

main objective is to introduce unpredictable changes to the new

chromosomes generated by the previous crossover operator,

resulting in chromosomes with a higher fitness value than the

current ones. The Mutation Operator acts on the chromosome

selected by the selection method, and its occurrence is

determined by the mutation rate variable. At the beginning of

the mutation process, a random number is generated, and if it

is less than or equal to the mutation rate, the mutation operator

is applied to the chromosome. Its ultimate goal is to create

novel solutions that may improve the overall fitness of the

population.

In-Depth Comparison of GA & PSO Algorithm

GA and PSO are population-based optimization algorithms

that solve complex problems. Here is a comparison table of

the GA and PSO algorithms (Table II):

Table II: Shows multiple parameters of the PSO and GA Algorithm

Parameter GA PSO

Population size Large Small to medium

Encoding scheme Binary or real-valued Real-valued

Selection process Fitness-proportionate Best individuals

Mutation operator Probability-based N/A

Crossover operator Binary or real-valued Real-valued

Particle updating N/A Based on personal and

global best

Search intensity Low to High Medium to high

Convergence speed Slow Fast

Exploration

capability

Low High

Complexity High Low to medium

S.Chitra [25] The PSO algorithm Calculate Load balance

Better than PSO and GA Time-consuming

Y.Mao [18] The Genetic Algorithm Calculate Load balance

Superior to FIFO Time-Consuming to

reach the optimal

solution

Fard et al. [28] The heuristic algorithm Calculate Energy

consumption and

reliability

More efficient The algorithm's

efficiency may not be

optimal when dealing

with a small number

of tasks and

processes.

Ge and Wei. [26]

The algorithm known as

Revised Discrete Particle

Swarm Optimization

(RDPSO).

Determine the costs of

communication and

computation.

The algorithm performs better than

the PSO and BRS (Best Resource

Selection) Algorithm.

Inefficient in dealing

with a large search

space.

International Journal of Computer Science and Telecommunications [Volume 14, Issue 2, June 2023] 5

Fig. 1: Shows a flow chart diagram of the PSO and GA Algorithm [27]

Performance Evaluation of Genetic Algorithm

Genetic Algorithms (GAs) are popular optimization techniques that imitate the mechanism of natural selection to discover the

best solution to a problem.. Performance evaluation of GA involves assessing its effectiveness in finding a near-optimal solution

to a problem and its efficiency in terms of time and resources required.

Here are some commonly used methods for the performance evaluation of GA:

1. Fitness Function Analysis: The fitness function evaluates the degree to which a solution meets the requirements of the

problem. Analyzing the fitness function helps in understanding the quality of solutions found by the GA

2. Convergence Analysis: Analyzing the convergence of a GA involves evaluating how close the population is to reaching

the optimal solution as the algorithm progresses. This analysis helps determine the number of iterations required to

achieve a solution that satisfies the problem requirements.

3. Parameter Tuning: The performance of GA is affected by the selection of various parameters, such as population size,

mutation rate, and crossover rate. Tuning these parameters involves experimenting with different combinations to identify

the most effective ones.

4. Comparison with other algorithms: Assessing the performance of the GA can involve comparing its results with those of

other optimization algorithms that solve the same problem. This allows for a fair comparison and helps to identify the

strengths and weaknesses of GA.

5. Scalability Analysis: GA performance can be evaluated by analyzing how it performs as the problem size increases. This

helps to determine whether GA is scalable to more significant problems and whether it can maintain a reasonable level

of performance as the problem becomes more complex.

Overall, the performance evaluation of GA involves analyzing various aspects of the algorithm, including its ability to find

reasonable solutions, convergence speed, parameter sensitivity, scalability, and comparison with other algorithms.

Performance Evaluation of Particle Swarm Optimization (PSO) Algorithm

The performance efficiency of the Particle Swarm Optimization (PSO) Algorithm can be evaluated based on the following

factors:

1. Convergence speed: The PSO algorithm's convergence speed is generally faster than other optimization algorithms. The

algorithm quickly converges to an optimal solution using the swarm intelligence technique.

2. The PSO algorithm's ability to obtain high-quality solutions relies on the fitness function used to assess those solutions.

The PSO algorithm can provide high-quality solutions if the fitness function is well-defined and appropriate.

3. Robustness: PSO algorithm is robust and can easily handle noisy and non-linear optimization problems. This makes it

suitable for real-world applications with complex and dynamic optimization problems.

Sharjeel Tariq, Muhammad Shahzad Ashraf Rana, M. Junaid Arshad 6

4. Scalability: The PSO algorithm can handle large and complex optimization problems by scaling up its swarm size and

the number of iterations, thereby increasing its computational complexity..

5. Ease of implementation: PSO algorithm is relatively easy to implement and does not require a lot of computational

resources. This makes it efficient for solving optimization problems in various domains.

Fitness Tests between GA and PSO Algorithm

PSO Parameters Genetic Parameters

Swarm size: 30 Population size: 30

Maximum number of generations: 200 Maximum number of generations: 200

D1, D2=3.0, 3.0 Type of selection: normal geometric [0.09]

Type of crossover: arithmetic [2]

Wstart, Wend=0.9, 0.4 Type of mutation: non-uniform [2, 100, 3]

Values PSO GA

Best 500.7721

496.321

Average 512.1185

507.112

Worst 503.12

515.71

Table III: [27] Shows fitness Tests of the PSO and GA Algorithm

Fig. 2: [27] Shows a flow chart diagram of the GA and PSO Algorithm

Table IV: [27] Shows Workflows, Average Results, and Executed Experiments of the PSO and GA Algorithm

The traits that define the workflows in Cloud Computing

Scenes Tasks Edges Average Data Size (MB)

Scene One 26 96 3.44

Scene Two 51 207 3.37

Scene Three 101 434 3.25

Scene Four 1001 4486 3.23

The algorithms were compared based on their average results in makes pan, execution cost, and load balancing

Methods Avg Makes Avg Execution Time Avg Load Balance

GA 799.131 451.331 74.591

PSO 578.0671 353.741 42.8821

Results of Executed Experiments

Algorithm Make span Execution Cost ($) Load Balance (rate)

Scenario One

GA 197.651 52.682 52.584

PSO 101-211 18.163 21.334

Scenario Two

GA 250.89 86.34 61.93

PSO 155.31 62.86 18.23

International Journal of Computer Science and Telecommunications [Volume 14, Issue 2, June 2023] 7

Tabular Evaluation of Genetic Algorithm (GA) & Particle Swarm Optimization (PSO) Algorithm

Table V: Shows a Tabular Evaluation of the PSO and GA Algorithm

Evaluation Measures Genetic Algorithm Particle Swarm Optimization

Representation Binary string Vector

Search Strategy Evolutionary Swarm-based

Convergence High probability of global optimum but

slower

Faster but may get stuck in local optima

Complexity Computationally expensive due to fitness

evaluation

Relatively simple and computationally efficient

Parameter Tuning Many parameters, such as population size,

mutation rate, and crossover rate

Fewer parameters, such as swarm size and

inertia weight

Convergence speed Slow but a high probability of finding

global optima

Fast but may get stuck in local optima

Exploration ability Strong due to diversity maintenance and

mutation operation

Moderate due to the stochastic search

Exploitation ability Strong due to the selection and crossover

operations

Moderate due to relying on local and global

best positions

Scalability High due to population-based approach Limited due to swarm size limitation

Complexity High due to the need for fitness function

evaluation

Low due to the simple update rule

Parameter tuning The problem is complex due to the

multitude of parameters involved, such as

population size, crossover rate, and

mutation rate.

Simple with only a few parameters, such as

swarm size and inertia weight

Robustness Strong due to the diversity maintenance Moderate due to the stochastic search

Applicability Wide range of optimization problems Suitable for continuous optimization problems

Performance Comparable to other optimization

algorithms

Competitive with other optimization algorithms

Convergence speed Slow but a high probability of finding

global optima

Fast but may get stuck in local optima

Exploration ability Strong due to diversity maintenance and

mutation operation

Moderate due to the stochastic search

Exploitation ability Strong due to the selection and crossover

operations

Moderate due to relying on local and global

best positions

Scalability High due to population-based approach Limited due to swarm size limitation

V. CONCLUSION

GA and PSO are powerful optimization algorithms using

different techniques to find the ideal scenario. GA uses the

principles of natural selection and genetics to evolve a

population of candidate solutions, while PSO uses a swarm

of particles to search the solution space. In general, GA is

more suitable for problems that involve discrete variables and

combinatorial optimization, while PSO is more suitable for

problems that involve continuous variables and multi-modal

optimization.

The results suggest that the PSO and GA algorithms are

suitable for optimizing parameters. However, from an

evolutionary standpoint, PSO outperforms GA in terms of

performance. PSO exhibits faster convergence, requiring

fewer generations to reach the final parameter values than

GA. Furthermore, while PSO and GA show linear increases

As the number of generations increases, the GA has a lower

cumulative computational time than PSO. This is because of

the communication that occurs between particles in PSO after

each generation. It is worth noting that the success of these

optimization techniques heavily depends on the selection of

control parameters and objective functions, and choosing

them appropriately is crucial.

The hybridization of GA and PSO algorithms has resulted

in a robust optimization technique that incorporates the

strengths of both algorithms. GA utilizes natural selection

and genetic operators to explore the solution space, while

PSO imitates the behavior of bird flocks or fish schools to

locate the global optimum. By combining these two

algorithms, a hybrid algorithm is created that is more

effective in handling complex optimization problems. In this

approach, GA performs a population-based search, and PSO

carries out a local search.

This hybridization strategy increases the algorithm's

exploration and exploitation capabilities by utilizing GA's

global and PSO's local search ability. Furthermore, the

hybrid algorithm can handle continuous and discrete

optimization problems and is insensitive to the initial

population, making it applicable to various real-world

optimization problems. The PSO and hybrid GA algorithm is

a widely accepted optimization technique that

Sharjeel Tariq, Muhammad Shahzad Ashraf Rana, M. Junaid Arshad 8

comprehensively solves complex optimization problems.

REFERENCES

[1] A. H. Aljammal, A. M. Manasrah, A. E. Abdallah, and N. M.

Tahat, “A new architecture of cloud computing to enhance the

load balancingg,” International Journal of Business Information

Systems, vol. 25, no. 3, pp. 393–405, 2007.

[2] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-

EncDB: A lightweight framework for privacy-preserving data

queries in cloud computing,” Knowledge-Based Systems, vol. 79,

pp. 18–26, 2015.

[3] A. M. Manasrah, T. Smadi, and A. ALmomani, “A Variable

Service Broker Routing Policy for data center selection in

cloud analyst,” Journal of King Saud University - Computer and

Information Sciences, vol. 29, no. 3, pp. 365–377, 2017.

[4] B. B. Gupta and T. Akhtar, “A survey on smart power grid:

frameworks, tools, security issues, and solutions,” Annales des

Te ĺe´communications, vol. 72, no. 9-10, pp. 517–549, 2017.

[5] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow scheduling

algorithms for grid computing,” in Metaheuristics for scheduling

in distributed computing environments, pp. 173–214, Springer,

2008.

[6] A. Verma and S. Kaushal, “Cost-Time Efficient Scheduling

Plan for Executing Workflows in the Cloud,” Journal of Grid

Computing, vol. 13, no. 4, pp. 495–506, 2015.

[7] H. Ji, W. Bao, and X. Zhu, “Adaptive workflow scheduling for

diverse objectives in cloud environments,” Transactions on

Emerging Telecommunications Technologies, vol. 28, no. 2,

Article ID e2941, 2017.

[8] A. M. Manasrah, “Dynamic weighted VM load balancing for

cloud-analyst,” International Journal of Information and

Computer Security, vol. 9, no. 1-2, pp. 5–19, 2017.

[9] W.-N. Chen and J. Zhang, “An ant colony optimization

approach to a grid workflow scheduling problem with various

QoS requirements,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 39, no. 1,

pp.29–43,2009

[10] A. K. M. K. A. Talukder, M. Kirley, and R. Buyya, “Multiobjec-

tive differential evolution for scheduling workflow

applications on global Grids,” Concurrency and Computation:

Practice and Experience, vol. 21, no. 13, pp. 1742–1756, 2009.

[11] “Privacy-preserving outsourced classification in cloud

comput- ing,” Cluster Computing, pp. 1–10, 2017.

[12] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure

integration of IoT and Cloud Computing,” Future Generation

Computer Systems, vol. 78, pp. 964–975, 2018.

[13] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A

genetic algorithm (GA) based load balancing strategy for

cloud computing,” Procedia Technology, vol. 10, pp. 340–347,

2013.

[14] Z. Zhang and X. Zhang, “A load balancing mechanism based

on ant colony and complex network theory in open cloud

computing federation,” in Proceedings of the 2nd International

Conference on Industrial Mechatronics and Automation

(ICIMA ’10), vol. 2, pp. 240–243, May 2010.

[15] T. D. Braun, H. J. Siegel, N. Beck et al., “A comparison of

eleven static heuristics for mapping a class of independent tasks

onto heterogeneous distributed computing systems,” Journal

of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–

837, 2001.

[16] M. Rana, S. Bilgaiyan, and U. Kar, “A study on load balancing

in cloud computing environment using evolutionary and

swarm based algorithms,” in Proceedings of the 2014

International Conference on Control, Instrumentation,

Communication and Computational Technologies, ICCICCT

2014, pp. 245–250, India, July 2014.

[17] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-

objective workflow scheduling in cloud,” IEEE Transactions

on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1344–

1357, 2016.

[18] Y. Mao, X. Chen, and X. Li, “Max–Min task scheduling algo-

rithm for load balance in cloud computing,” in Proceedings of

International Conference on Computer Science and

Information Technology, S. Patnaik and X. Li, Eds., vol. 225,

pp. 457–465, Springer, New Delhi, India, 2014.

[19] P. Kumar and A. Verma, “Scheduling using improved genetic

algorithm in cloud computing for independent tasks,” in Pro-

ceedings of the 2012 International Conference on Advances in

Computing, Communications and Informatics, ICACCI 2012, pp.

137–142, India, August 2012.

[20] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling

optimization in cloud computing based on heuristic algorithm,”

Journal of Networks, vol. 7, no. 3, pp. 547–553, 2012.

[21] Liu H., Zhong F., Ouyang B., Wu J., An approach for QoS-

aware web service composition based on improved genetic

Algorithm, International Conference on Web Information

Systems and Mining, 2010 Oct 23, 1, 123-128

[22] Chen R., Guo J., Bao F., Trust management for SOA-based

IoT and its application to service composition, IEEE

Transactions on Services Computing, 2016 May 1, 9(3), 482-

95.

[23] Gen M., Cheng R., Genetic Algorithms & Engineering

Design, John Wiley& Sons, Inc., New York, 1997

[24] R. Xu, R. An and X. Geng, "Research intrusion detection

based PSO-RBF classifier", Proc. IEEE 2nd Int. Conf. Softw.

Eng. Service Sci., pp. 104-107, Jul. 2011.

[25] S. Chitra, B. Madhusudhanan, G. R. Sakthidharan, and P.

Saravanan, “Local minima jump PSO for workflow scheduling

in cloud computing environments,” Lecture Notes in Electrical

Engineering, vol. 279, pp. 1225–1234, 2014.

[26] Y. Ge and G. Wei, “GA-based task scheduler for the cloud com-

puting systems,” in Proceedings of the International

Conference on Web Information Systems and Mining (WISM

’10), vol. 2, pp. 181–186, IEEE, October 2010.

[27] . Panda, S., & Padhy, N. P. (2008). Comparison of particle

swarm optimization and genetic algorithm for FACTS-based

controller design. Applied soft computing, 8(4), pp. 1418.

