
International Journal of Computer Science and Telecommunications [Volume 12, Issue 2, May 2021] 21

Journal Homepage: www.ijcst.org

Ansa Shahzadi1, Muhammad Aurangzaib2

1,2Department of Computer Science, University of Engineering and Technology, Lahore
1ansashahzadi100@gmail.com, 2engineeraurangzaib2015@gmailcom

Abstract– In a split database system, detecting a deadlock is

difficult since no monitor has completed and updated the data

about the system and its data dependencies. In a circulating

database system that uses locking as a concurrency control

approach, there is a deadlock problem. The goal of this research

is to investigate deadlock detection in circulating database systems

in depth. To find dead spots, we employ a range of techniques. By

sending priority to the procedures, our intended technique detects

and resolves deadlocks while the initiator is indirectly or directly

involved and eliminates superfluous messages in concurrent

algorithm application.

Index Terms– Deadlock Cycle, Detect Deadlock for Local &

Global Cycle and Deadlock Prevention

I. INTRODUCTION

N a simultaneous scheduled design, deadlock [7] happens

when a group of processes enters an unending wait loop. A

processor transaction can be in one of three states: ongoing,

active, or blocked. All sources or data necessary by a process

have been picked in the active stage, and the method is being

implemented or is ready to start. While another process waits,

a blocked process must be preserved for critical sources.

Fig. 1: Deadlock in Distributed System

A system is said to be in a state of deadlock when a group of

delayed processes in it wait for each other to free up resources.

Process PA is waiting for resource RB, which was previously

assigned to process PB, to be released. Both procedures will

end up waiting for themselves constantly as a result of PB's

request for resource RA, which is stalled by PA, resulting in

Deadlock.

Fig. 2. Deadlock Condition

We suggest a circulated deadlock detection technique based

on history [12] edge-rushing in this paper. While the initiator

is directly or indirectly involved, our suggested technique

identifies and resolves deadlock.

By taking into account the priority that is provided to the

procedures, our technique can cope with the concurrent

execution of the algorithm and avoids the detection of the same

deadlocks, as well as the creation of needless messages in the

concurrent implementation of the algorithm. Unlike other

planned techniques, which only detect the deadlock without

proposing a solution [11], the methodology we apply

eliminates the stalemate as soon as it is recognized,

significantly reducing the average period of deadlock

persistence in comparison to other similar algorithms. By

including an encoding approach into our algorithm, we were

able to minimize the amount of data contained in the probe

message.

Deadlock detection is done in a variety of methods by

database management systems. They're all predicated on

discovering sequences in a transaction wait for graph (TWFG),

which is made up of nodes that represent transactions and

directed edges that reveal which transactions are waiting for

another [6]. TWFG interrupts a cycle by picking a transaction

from the sequence and forcing it to flop when it discovers one

(typically letting the transaction start again with the original

input). When TWFG is copied over numerous websites in a

circulating database, this process gets more difficult.

Several methods for detecting deadlocks in distributed

database systems have been reported [6], [8]-[11]. Some

methods entail sending probes from one location to another.

I

Centralized Solution for Deadlock Detection in the

Distributed System

ISSN 2047-3338

Ansa Shahzadi, Muhammad Aurangzaib 22

Deadlocks are identified via probes, which are specialized

messages. The edges of the wait-for graph are followed by

probes (these messages) without establishing a distinct

representation of the graph [8], [9], [11]. Probe algorithms are

more effective than wait-for-graphs, which is an advantage of

this method. The method used by that probe has the drawback

of necessitating the finding of the cycle's constituents after

impasse has been detected.

A) Problem Statement

When groups of procedures wait for each other for an infinite

time to receive their desired reserve, it is called a deadlock. The

most One difficult task in circulated systems is detecting a

deadlock, and possible answers have been presented [1], [2].

II. RELATED WORK

In the first step, we collect information from a variety of

websites that are relevant to our topic and the resource

provider. Google Scholar, Research Gate, IEEE Explore, and

Springer Link are many of these sites. In concurrent

programming, deadlock [7] happens when a group of processes

enters an endless loop of waiting.

Many techniques for detecting deadlocks in circulating

database systems have been proposed [6], [8]. Some methods

entail sending probes from one location to another. Deadlocks

are detected via probes, which are specialized messages. The

edges of the wait-for graph are followed by probes (these

messages) without establishing a distinct representation of the

graph [8].

A) Comparison of Existing Algorithms

We'll talk over a couple of approaches for detecting and

resolving deadlocks that have been proposed already.

Table I. Comparison of Existing Algorithm

Sr.

No

Algorithms Methodology Results Challenges

1 Chandy

Algorithm

The Chandy Algorithm is one of

most well-known algorithms in the

world.

Transaction wait-for-graphs are

often used in this algorithm

(TWFG).

For deadlock detection, probes

computation is used.

“It monitors the status of

transactions at local sites

and employs probes to

discover global

deadlocks.”

“This approach does not

suffer from improper

deadlock detection even if

the transactions do not

follow the two-phase

locking protocol.”

“A probe is issued and

transmitted from one

location to another if a

transaction begins to

wait for another

transaction.”

2 Obermack

Algorithm

Obermack et al. [27] presented an

approach that utilizes a distinct node

for using TWFG.

Collect and add

information from other

sites in the form of strings

to the TWFG.

The wait-for graphs do

not generate a snapshot

for the TWFG.

This approach does not

perform correctly; it

finds erroneous

deadlocks.

3 Menasce’s

Algorithm

“Use a simpler transaction-wait-for

graph (TWFG)”

 “This is the first approach

to use a reduced (TWFG),

in which the edges

indicate transaction

dependencies and the

vertices indicate

transactions.”

Some deadlocks may be

detected by this

approach, and false

deadlocks may be

discovered.

4 Ho Algorithm Use a transaction table to keep

records of the resources that are

being held and awaited by local

transactions.

“On a daily basis, a site is

chosen as the central

controller in charge of

deadlock detection.”

“This technique has the

problem of requiring the

sending of 4n messages,

where n specifies the

number of sites in the

system.”

International Journal of Computer Science and Telecommunications [Volume 12, Issue 2, May 2021] 23

B) Dead Lock Handling Strategies

1) Avoid Deadlock

“It prevents blocking [15] by verifying that the resource will

only be released for processing if the resulting global state is

safe. When all the processes / transactions of a distributed

system have finished executing, the overall state will be secure.

Unfortunately, this is not possible [16] for a distributed system

due to various factors.”

2) Prevention of Deadlock

“It ensures that at least some of the conditions that cause the

deadlock [15] must never be met. When all resources are

allocated to a process at the same time before continuing to run

[16], or if an active process requests a resource that has been

owned by a blocked process, the blocked process releases that

resource. Deadlock prevention, on the other hand, has the

disadvantage of being impractical and inefficient in a

distributed system.”

3) Deadlock detection and recovery

“It allows a system to enter a deadlock [15], then find a

deadlock and optionally end the deadlock based on WFG. First,

it is evaluated whether the loop [11] occurs in WFG as a result

of interactions between transactions and data items. If a cycle

starts, it will continue to exist in the system until it is

interrupted. The blockage is removed once the cycle is

interrupted. Lockout identification and recovery occurs

alongside routine system operations, ensuring that overall

system performance is not impaired.”

Fig. 3. Methods for handling Deadlock

III. PROPOSED ALGORITHMS

The described approach eliminates incorrect detection

deadlock and can detect deadlocks affecting only a portion of

the system's processes.

A) B. M. Algorithm

“B. M. Algorithm published an algorithm in 2009 [19] which

exploits the notions of LTS (Linear Transaction Structure),

DTS (Circular Transaction Structure) and priority to find and

determine deadlocks. Global and local blockages can be

detected with this method.”

“The first table includes LTS or DTS, which maintains a list of

transactions that receive data items from other transactions,

while the second table provides a list of transaction IDs and

their corresponding priorities. When WFG encounters a

blocking cycle, the priority of transactions participating in the

blocking cycle is evaluated.”

“To overcome the deadlock, the transaction with the lowest

priority is rejected so that the data contained in the abandoned

transaction becomes accessible for transactions in the pending

state.”

The methodology is based on the following calculations:

• A brief description for each transaction amongst all

sites.

• Cycles on a local and global scale.

• The victim transaction is terminated relying on the

cycles.

B) Edges Chasing Algorithm

In WFG, this class of algorithms uses special signals called

probes to find a loop [10], [9]. A probe is issued when a

transaction comes to a halt, that is, when you wait for another

transaction to remove a lock on a data item.”

Only delayed transactions across graph edges receive probe

messages, which are sent to all transactions that are dependent

on the delayed transaction. When a probe is received by a

running transaction, it has the option to discard it. When a

probe is received by a blocked transaction, the path information

in the probe is changed, and the probe is broadcast over.

Finally, there is no deadlock if the probe gets at the

transaction that holds the lock, but there is a deadlock cycle if

the probe returns to the transaction that started probe

communication. If transaction TA is stopped [7], a probe will

be produced and transmitted to all transactions that TA depend

on.

If the probe returns to TA, a deadlock has occurred or

deadlock has discovered.

Fig. 4. Edge- Chashing Algorithm

C) Mitchell Merrit Algorithm

An edge-chasing algorithm that monitors for deadlock by

sending out special messages called probes. Mitchell Merrit is

an edge-chasing algorithm that assigns two labels to each

transaction: public and private. Both of them are initially set to

the same number [6]. When a transaction is stopped by a

resource-holding transaction, the blocked transaction

increases. When all essential resources are accessible, a

transaction become active, or it expires out or fails.

Ansa Shahzadi, Muhammad Aurangzaib 24

Blocked transactions monitor for blocking transactions on a

routine basis, and if their public labels are lower than the

blocking ones, they update their public label to the same value

as the blocking transactions. Because the technique propagates

the greatest public label backward in TWFG across cycle, a

deadlock is observed if a transaction gets its own label back.

Fig. 5. Mitchell Merrit Algorithm

IV. COMPARISON FOR DETECTING DEADLOCK IN A

DISTRIBUTED SYSTEM

A brief comparison of our proposed algorithms which are

used deadlock detection in circulated systems.

V. CORRECTNESS PROOF OF OUR ALGORITHMS

These approaches identify a stalemate in a finite amount of

time if the system has one. Proof Assume the system is stuck

in a deadlock D. Consider the scenario that the algorithm

misses a system-wide deadlock D. In Distributed Concurrent.

“In the snapshot, there is a node ID where evaluate(fi) = true

exists. According to the concept of deadlock, a member of node

deadlock D will be blocked permanently.” If, contrary to our

hypothesis, the system does not experience a deadlock D, fi is

evaluated as true throughout the reduction. As a result,

evaluate(fi) = true and I D, which is in direct opposition to our

hypothesis. If evaluate(fi) returns true, fi only contains the

nodes in the system.

VI. CONCLUSION

In this article, we have presented an approach to detect local

and global deadlock. This technique ensures that general crash

detection is not depends on local lock detection. Proposition

the algorithm does not detect any false locks and does not the

detected block actually exist. The technique uses TQ

transaction queue) to store priority id for all transactions that

are in local deadlock loops or in Global lock cycles. Based on

the priority ID, the younger transactions stop to release, the

system of dropout cycles.

The key improvement of this approach is that it significantly

reduces message length without using any explicit strategies.

Because the initiator selects the suitable target during the

propagation of responses, the message delay associated with

deadlock resolution is considerably reduced. According to our

simulation results, the proposed method surpasses existing

decentralized algorithms in terms of message length and

deadlock resolution.

In future our efforts to reduce deadlock in well form mannered

and proposed more and more algorithms which give more

efficient results and also helpful to improve the performance of

our system.

REFERENCES

[1]. Priyadarshini, S. S. Sane, Rutuja Jadhav, “Deadlock Detection

in Distributed Database,” International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS),

Volume 2, Issue 2, ISSN. 2278-6856, April 2016.

[2]. M. Tamer Özsu, Patrick Valduriez “Principles of Distributed

Database Systems,” London Springer, Third Edition: 2011.

[3]. Edgar Knapp, “Deadlock Detection in Distributed Databases,”

ACM Computing Surveys, Vol. 19, No. 4, December 2019.

[4]. Selvaraj Srinivasan, R. Rajaram, “A decentralized deadlock

detection and resolution algorithm for generalized model in

distributed systems”, Published online: 19 January 2011.

[5]. Ha Huy Cuong Nguyen, Hung Vi Dang, Nguyen Minh Nhut

Pham, Van Son Le and Thanh Thuy Nguyen, “Deadlock

Detection for Resource Allocation in Heterogeneous

Distributed Platforms”, July 2015.

[6]. Edgar Knapp, “Deadlock Detection in Distributed Databases,”

ACM Computing Surveys, Vol. 19, No. 4, December 2019.

[7]. Selvaraj Srinivasan · R. Rajaram, “A decentralized deadlock

detection and resolution algorithm for generalized model in

distributed systems”, Published online: 19 January 2011.

[8]. Gaurav Karki, “A Survey on Deadlock Detection Algorithms

for Distributed Systems”.

[9]. Navin Kumar, “Deadlock Prevention and Detection in

Distributed Systems”, (Mtcs/3001/2014).

International Journal of Computer Science and Telecommunications [Volume 12, Issue 2, May 2021] 25

Sr No. Algorithms Methodology Output Challenges

 M. Alom

Algorithm

The M. Alom Technique uses

the concepts of LTS, DTS and

priority.

“The LTS or DTS database

contains a list of transactions

that need data items from

other transactions, while the

second table contains a list

of transaction IDs and their

priority.”

“This approach fails to

detect deadlock if the

priority order [20] is

modified.”

2 Edge-Chasing

Algorithm

To identify a cycle in WFG,

algorithms of such a class use

specific messages known as

probes [24], [25].

When a locked transaction

receives a probe, the route

information in the probe is

modified, and the probe is

transmitted again.

“The algorithm's

fundamental weakness is

that it fails to detect

deadlock because when

initial transaction is not

member of the deadlock

cycle.”

3 Mitchell Merrit

Algorithm

An edge-chasing algorithm

that monitors for deadlock by

sending out special messages

called probes

Mitchell Merrit is an edge-

chasing algorithm that

assigns two labels to each

transaction: public and

private. Both of them are

initially set to the same

number.

Because the technique

propagates the greatest

public label backward in

TWFG across cycle, a

deadlock is observed if a

transaction gets its own

label back.

