
International Journal of Computer Science and Telecommunications [Volume 11, Issue 3, June 2020]                                     11 

Journal Homepage: www.ijcst.org 

 
 

FARINRE, J. Moyosore1, ABIOLA, O. Arowolo2 and AKINOLA, S. Olalekan3 

1,2,3University of Ibadan, Ibadan, Nigeria 

 

 

 

 
Abstract– Defects found after the development of software has 

made researchers develop different types of software defect 

prediction model. Most concurrent software has defects in them 

that makes them to give incorrect results. This study provides a 

model that predict defect in concurrent software system so as to 

make the software system to produce a correct and expected 

results. Deep learning classifier Convolutional Neural Network 

(CNN) was employed to build the model and its performance was 

compared with an existing model that also predicts defect in 

concurrent software systems. The model combined Static and 

Dynamic metric and Convolutional Neural Network (CNN) for 

predicting defects in concurrent software system.  

 

Index Terms– Concurrent Programs, Feature Selection, 

Convolutional Neural Network and Defect Prediction 

 

I.    INTRODUCTION 

software defect is an error, flaw, failure or fault in a 

computer program or system that produces an incorrect or 

unexpected result, or to behave in unintended ways 

(Parameswari, 2015). A defect indicates the unexpected 

behavior of system for some given requirements. The 

unexpected behavior is identified during software testing and 

marked as a defect. Timely identification of software bugs 

facilitates the testing resources allocation in an efficient 

manner and enables developers to improve the architectural 

design of a system by identifying the high-risk segments of the 

system (Menzies et. al., 2017).   

Most defects arise from mistakes and errors made in either a 

program's source code or its design, or in components and 

operating systems used by such programs. A few are caused by 

compilers producing incorrect code. A program that contains a 

large number of defects, and/or defects that seriously interfere 

with its functionality, is said to be buggy (defective). Defects 

can trigger errors that may have ripple effects (Bug Archived 

March 23, 2017, at the Wayback Machine).  

This work is aimed at improving on predicting defects in 

concurrent software systems using deep learning technique. 

Static and dynamic metrics using Yu et. al., (2018) 

mathematical formula will be generated with an improved 

model for the prediction of software defects with deep learning 

techniques. The result of the research was evaluated against the 

existing model using accuracy, precision, recall and F1-Score. 

II.    LITERATURE REVIEW 

Developing fault-free reliable software is a daunting task in 

the current context, when software is being developed for 

problems with increasing difficulty with more and more 

complex problem domains (Vashisht et. al., 2015). Many 

Software Defection Prediction models have been developed to 

fix the problem of defects in software but none of these models 

have proven to give accurate results. Machine learning, deep 

learning and data mining algorithms have been used to develop 

a Software Defect Prediction Model.  

Software defect prediction is a process of building classifiers 

to predict sections of codes that potentially contain defects, 

using information such as code complexity and change history. 

The prediction results (i.e., buggy code areas) can place 

warnings for code reviewers and allocate their efforts. The code 

areas could be files, changes or methods (Moser et. al., 2008). 

Machine Learning and Deep learning Algorithms that have 

been used for Software. Defect Prediction are Random Forest, 

Convolutional Neural Network (CNN), Logistic Regression, 

Naives Bayes, K-means, Decision Tree, Support Vector 

Machine (SVM), Linear Regression, K-Nearest Neighbors 

(KNN) etc. Deep Learning Algorithm is used because it 

automatically extracts features for users instead of having to 

select features one by one. 

A Neural Network is a Deep Learning Technique and the 

term “deep” refers to the number of hidden layers in the neural 

network. Traditional neural networks only contain 2-3 hidden 

layers, while deep networks can have as many as 150. Deep 

learning models are trained by using large sets of labeled data 

and neural network architectures that learn features directly 

from the data without the need for manual feature extraction. 

Example of the most popular Neural Networks are Artificial 

Neural Network (ANN) and Convolutional Neural Network 

(CNN) (Pingel, 2017).  

An Artificial Neural Network (ANN) is an information 

processing system which contains a large number of highly 

interconnected processing neurons. These neurons work 

together in a distributed manner to learn from the input 

information, to coordinate internal processing, and to optimize 

its final output.  Fig. 1 shows an Artificial Neural Network, 

which is organized in layers. 
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Fig. 1: A Neural network organized in layers (Sorokina, 2017) 

 
 

A Convolutional Neural Network (CNN) is an example of a 

deep learning technique. It is a special kind of neural network 

for processing data that have a known grid-like topology 

(Goodfellow et. al., , 2016), such as time-series data in 1-D grid 

and image data in 2-D grid. CNN have been proven to be 

successful in many areas such as image classification, speech 

recognition, etc. Fig. 2 shows an image of a Convolutional 

Neural Network (CNN). 

 

 
Fig. 2: An image of a Convolutional Neural Network (CNN) (Jianli et. al., 

2017) 
 

 

Concurrent computation makes programming much more 

complex (Cartwright, 2000). In a concurrent program, several 

streams of operations may execute concurrently. Each stream 

of operations executes as it would in a sequential program 

except for the fact that streams can communicate and interfere 

with one another. Each such sequence of instructions is called 

a thread. For this reason, sequential programs are often called 

single-threaded programs.  

When a multi-threaded program executes, the operations in 

its various threads are interleaved in an unpredictable order 

subject to the constraints imposed by explicit synchronization 

operations that may be embedded in the code. The operations 

for each stream are strictly ordered, but the interleaving of 

operations from a collection of streams is undetermined and 

depends on the vagaries of a particular execution of the 

program. One stream may run very fast while another does not 

run at all, a given thread can starve unless it is the only 

“runnable” thread (Cartwright, 2000). Fig. 3 shows how a 

concurrent program works, with three threads running. 

A) Related Works  

Software defect prediction is the process of locating 

defective modules in software. To produce high quality 

software, the final product should have as few defects as 

 

Fig. 3: Image that shows how a concurrent program works (Java Prog. 

Tutorial, 2020) 

 

possible. Early detection of software defects could lead to 

reduced development costs and rework effort and more reliable 

software. So, the study of the defect prediction is important to 

achieve software quality.  The most discussed problem is 

software defect prediction in the field of software quality and 

software reliability. Boehm and Basili (2001) observed, finding 

and fixing a problem after delivery is 100 times more expensive 

than fixing it during requirement and design phase. 

Additionally software projects spend 40 to 50 percent of their 

efforts in avoidable rework. Therefore, defect prediction is 

extremely essential in the field of software quality and software 

reliability. Defect prediction is comparatively a novel research 

area of software quality engineering.  

There has been much research on developing various 

software metrics and prediction algorithms to assess software 

quality. For example, Lee et. al., (2011) proposed a set of 

micro-interaction metrics (MIMs) that leverage developers’ 

interaction information combined with source code metrics to 

predict defects. Meneely et. al., (2008) examine structure of 

developer collaboration and use developer network derived 

from code information to predict defects. Basili et. al., (2008) 

used Chidamber and Kemerer metrics, and Ohlsson and Alberg 

(1996) used McCabe’s cyclomatic complexity for defect 

prediction. Menzies et. al., (2010) conclude that static code 

metrics are useful in predicting defects under specific learning 

methods. These techniques, however, focus on sequential 

programs while ignoring code attributes and testability for 

concurrent programs. 

Another work found is the work by Mathews and Tu, (2010) 

based on Ada programs. This work considers only the number 

of synchronizations and conditional branches that contain 

synchronization points without utilizing them to perform defect 

prediction. However, this work does not aim to predict 

concurrency faults. In addition, the work does not consider 

dynamic metrics. 

Jianli et. al. (2017) worked on using Convolutional Neural 

Network to predict defects in software. This work focused only 

on file level prediction. They claim that programs have well-

defined syntaxes and rich semantics hidden in the Abstract 

Syntax Trees (ASTs), which traditional features often fail to 

capture, and the traditional methods does not really give 

satisfactory results. Jianli et. al. used Convolutional Neural 

Network combined with Traditional Defect prediction for 

predicting defects because it has been proven to automatically 

generate features since it can effectively capture highly 

complicated non-linear features.  

Yu et. al., (2018) developed a model with a combination of 

derived metric sets to improve prediction of defects in 
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concurrent software programs. Yu et. al., (2018) named their 

model the ConPredictor. The ConPredictor prediction model 

was built upon all 24 static and dynamic concurrency metrics. 

They empirically compare the performance of ConPredictor to 

those of prediction models built using traditional metrics that 

have been widely used in previous fault prediction work. They 

also investigate whether the combined use of mutation metrics 

and source code metrics improve the accuracy of the resulting 

prediction model. However, there were few cases where an 

instance (i.e., function) is mislabeled as non-faulty. This is 

because a concurrency fault may involve more than one 

function because the conflicting shared variables may exist in 

different functions. A function labeled as non-faulty may have 

conflicting accesses with other functions that are labeled as 

faulty.  

This present study proposes an improved ConPredictor 

model for software defect prediction in concurrent program 

using deep learning technique. This research work improves on 

the existing model of Yu et. al., (2018).  

III.    METHODOLOGY 

The research work was designed in such a way as to allow 

for the collection and analysis of defect data from a standard 

data source. The data was collected with the aim of identifying 

defects using deep learning techniques (Convolutional Neural 

Network). The dataset used for the analysis was the one used 

by the ConPredictor model. Tyu et. al., (2018) provide a link 

(http://cs.uky.edu/_tyu/ConPredictor) to where we can access 

the dataset so has to use for further research work.    

The data used in this study was gotten from the link where 

four large concurrent software projects (Apache, MySQL, 

Mozilla, and OpenOffice) were used to build the model.  The 

module that had concurrent program properties were selected 

to identify which particular module has concurrent type of 

defects. The dataset was divided into train and test sets and the 

model was trained using Convolutional Neural Network 

(CNN). The number of defects found in the dataset were 

counted and recorded. These data sets were selected because 

with millions of lines of publicly accessible code and well-

maintained bug repositories, they have been widely used by 

existing bug characteristic studies (Jin et. al., 2012), and 

concurrency fault detection and testing techniques (Deng et. 

al., 2013).  

The proposed methodology for the study is shown in Fig. 4. 

The proposed methodology classifies the selected software 

modules into defective and non-defective categories. Software 

defect prediction helps to identify defective modules in 

software, and it reduces the cost of having to fix defects after a 

software has been delivered to customer. 

A) Nature/Type of Defect Found in the Software Project 

The types of defects found in the software projects were the 

usual concurrency defects found in concurrent software. These 

defects are Live lock, Deadlocks, Hold and wait (Resource 

Holding), Starvation. In this study, only these four defects were 

considered. The model predicts functions that are likely to 

contain concurrency defects in real-world applications.  

Specifically, six novel code metrics specific to concurrent 

programs were proposed. Concurrency control flow graph 

(CCFG) was adapted to generate code metrics involving: 

Access Point of Public Thread Variables (APPTV), Number of 

Concurrent Conditionals (NCC), Edge Communication value 

in CCFG (EC-CCFG), Concurrent Cyclomatic Number (CCN), 

Number of Public Variables (NPV) and Number of Interleaved 

Operations (NIO) (Yu et. al.,2018). 

 

 

 
 

Fig. 4: The proposed methodology 
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Fig. 5. The overall workflow of CNN (Li et. al., 2017) 
 

 

 

Eighteen mutation metrics were defined and computed by 

applying a variety of mutation operators specific to concurrent 

programs. These metrics include six static metrics (e.g., the 

number of times a mutation operator is applied) and 12 

dynamic metrics from dynamic mutation analysis. The 

proposed model was built on these metrics i.e., the six derived 

and eighteen mutation metrics.  

B) Using Convolutional Neural Network (CNN) to Build the 

Improved Model 

Convolutional Neural Network (CNN) is primarily used to 

classify images. So, there is need to convert our datasets to 

vectors so that the CNN can take as input. The Source code 

(datasets) is parsed into Abstract Syntax Trees (ASTs) to form 

token vectors. Thus, each source file is represented by a token 

vector. Then conduct mapping and word embedding converts 

the token vectors into numerical vectors and input the 

numerical vectors to CNN. CNN will automatically generate 

features and classify the dataset into defective and non-

defective. The overall workflow of CNN (Li et. al., 2017) is 

depicted in Fig. 5. 

The deep learning classifier (Convolutional Neural Network) 

was used to make the model learn from the Training set. The 

model is tested on the Test set and the performance measures 

were calculated. Hence, the dimensionality of the data was first 

reduced to a set of 6 cumulated features using 4 different 

techniques and then trained the model using Deep learning 

classifier. A detailed comparison was then made based on the 

performance metrics that include Accuracy, Precision, Recall 

and F1-Scores. Anaconda was used as the development 

environment alongside Jupyter which is a launch tool for 

scientific analysis using Python in the Anaconda environment.  

Multiple network architectures were implemented with 

different configurations for the auto encoder and the neural 

network. Once we carried out the tests, it was found that the 

best configuration for the model was the following: 64 hidden 

neurons, 0.9 of learning rate, 0.1 for corruption level, and 5000 

iterations of training. In the case of the deep leaning 

configuration, the best result was adjusted with the following 

combination of values: 4 hidden layers, 0.3 of learning rate, 0.9 

of momentum factor and 1000 iterations of training. 

Our model was applied on the four datasets that were 

collected, defective instances were predicted and instances 

useful in the dataset were selected. 

IV. RESULTS AND PERFORMANCE EVALUATIONS 

Table I shows the defective instances found in the four 

datasets. In the first dataset, 76 instances were found to be 

defective. In the second dataset, 300 instances were found to be 

defective. In the third dataset, 138 instances were found to be 

defective and 115 instances were found to be defective in the 

last dataset. The results of the Accuracy, Precision, F – Score 

and Recall of the Model is presented in Table II. From the 

Table, it is shown that that the average accuracy for the four 

datasets was 75.4% while the precision of the model was 

73.9%. 

A) Result Comparison 

Comparing the performance of our Improved Model with the 

ConPredictor model proposed by Tyu et. al., , (2018), Table 3 

and Fig. 6 show the results obtained. Tyu et. al., , (2018). 

ConPredictor model analysis was done using WEKA as the tool 

for analysis. We adopted the same data and metrics used by 

Tyru et. al. (2018) but our model was implemented in Python 

development environment. From Table 3, it can be deduced 

that our Improved Model outperforms the ConPredictor in all 

the four-performance metrics used.  

 

 
Table I:  Numbers of defects found in each software projects 

Software 

Project 

Total 

Instances 

Selected 

Instances 

Defective 

Instances 

Dataset 1 35761 2000 76 

Dataset 2 71665 2145 300 

Dataset 3  144382 4700 158 

Dataset 4 110509 6139 120 
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Table II: Result of the Accuracy, Precision, F – Score and Recall for the Model 

DATASET  ACCURACY PRECISION RECALL F-SCORE 

Dataset 1 75.2% 72.5% 74.3% 73.4% 

Dataset 2 74.5% 73.4% 72.5% 73.0% 

Dataset 3 76.6% 75.7% 73.2% 74.4% 

Dataset 4 75.4% 73.9% 73.3% 73.6% 

AVERAGE 75.4% 73.8% 73.3% 73.6% 

 
 

Table III: Comparison Results of ConPredictor against the Improved Model 

 ConPredictor Improved Model 

Accuracy 72.0% 75.4% 

Precision 68.0% 73.8% 

Recall 64.0% 73.3% 

F1-Score 66.0% 73.6% 

 

 

Fig. 6: Graph of Result Comparison 

 

 

 

 

 

 

       

 

 

 

 

 

Fig. 7: Confusion matrix 
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B) Confusion Matrix 

A confusion matrix, also known as an error matrix, is a two 

by two table layout that contains four outcomes produced by a 

binary classifier to visualize the performance of the applied 

algorithm. It reports the number of false positives (FP), false 

negatives (FN), true positives (TP), and true negatives (TN). 

Each row of the matrix represents the instances in a predicted 

class while each column represents the instances in an actual 

class.  

Fig. 7 shows the confusion matrix of the performance of our 

improved model. It shows that the true positive (TP) “correct 

positive prediction” covers 50% of the entire dataset while the 

false positive (FP) “incorrect positive prediction” is covers 

only 4% of the entire dataset. However, the true positive (TN) 

“correct negative prediction” covers 17.9% of the entire dataset 

while the false negative (FN) “incorrect negative prediction” 

covers 60.7%. 

C) Discussion of Results 

From the results presented, it was demonstrated that the 

improved model reduced the number of false positive in the 

datasets compared to the ConPredictor model. For the 

improved model, the accuracy was higher because it predicted 

more defects in each dataset than the ConPredictor model 

predicted. In the first dataset, the improved model predicted 6 

defective instances more than the ConPredictor model. In the 

second dataset the improved model predicted 70 defective 

instances more than the ConPredictor model. In the third 

dataset, the improved model predicted 16 defective instances 

more than the ConPredictor model.  In the fourth dataset the 

improved model predicted 4 defective instances more than the 

ConPredictor model.  

The improved model accuracy was 3.4% higher than the 

ConPredictor model, the improved model precision was 5.8% 

higher than the ConPredictor model. The improved model 

recall was 9.3% higher than the ConPredictor model, the 

improved model f1-score was 7.6% higher than the 

ConPredictor model. Therefore, the improved model gives a 

slightly better performance in all the performance measures 

than the ConPredictor model. 

V.    CONCLUSION 

Different software prediction models have been developed 

but none has been accurate in predicting defects in concurrent 

software systems. Convolutional Neural Network (CNN) was 

used to build the improved model and static and dynamic 

metric was generated to help predict defects better in 

concurrent software system. The CNN was used because it has 

been established that it builds better prediction model and 

because of the unpredictable and non-deterministic properties 

of concurrent software system; Convolutional Neural Network 

(CNN) has been proven to work well for these kinds of trends. 

In this study, Convolutional Neural Network (CNN) was 

used to build an improved model while static and dynamic 

metrics were generated to help predict defects better in 

concurrent software system. The performance of the model was 

evaluated against the existing model using performance 

measures like accuracy, precision, recall and f1-score. This 

model developed could be improved upon by using other deep 

learning algorithms to build a prediction model.  
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