
International Journal of Computer Science and Telecommunications [Volume 11, Issue 3, June 2020] 11

Journal Homepage: www.ijcst.org

FARINRE, J. Moyosore1, ABIOLA, O. Arowolo2 and AKINOLA, S. Olalekan3

1,2,3University of Ibadan, Ibadan, Nigeria

Abstract– Defects found after the development of software has

made researchers develop different types of software defect

prediction model. Most concurrent software has defects in them

that makes them to give incorrect results. This study provides a

model that predict defect in concurrent software system so as to

make the software system to produce a correct and expected

results. Deep learning classifier Convolutional Neural Network

(CNN) was employed to build the model and its performance was

compared with an existing model that also predicts defect in

concurrent software systems. The model combined Static and

Dynamic metric and Convolutional Neural Network (CNN) for

predicting defects in concurrent software system.

Index Terms– Concurrent Programs, Feature Selection,

Convolutional Neural Network and Defect Prediction

I. INTRODUCTION

software defect is an error, flaw, failure or fault in a

computer program or system that produces an incorrect or

unexpected result, or to behave in unintended ways

(Parameswari, 2015). A defect indicates the unexpected

behavior of system for some given requirements. The

unexpected behavior is identified during software testing and

marked as a defect. Timely identification of software bugs

facilitates the testing resources allocation in an efficient

manner and enables developers to improve the architectural

design of a system by identifying the high-risk segments of the

system (Menzies et. al., 2017).

Most defects arise from mistakes and errors made in either a

program's source code or its design, or in components and

operating systems used by such programs. A few are caused by

compilers producing incorrect code. A program that contains a

large number of defects, and/or defects that seriously interfere

with its functionality, is said to be buggy (defective). Defects

can trigger errors that may have ripple effects (Bug Archived

March 23, 2017, at the Wayback Machine).

This work is aimed at improving on predicting defects in

concurrent software systems using deep learning technique.

Static and dynamic metrics using Yu et. al., (2018)

mathematical formula will be generated with an improved

model for the prediction of software defects with deep learning

techniques. The result of the research was evaluated against the

existing model using accuracy, precision, recall and F1-Score.

II. LITERATURE REVIEW

Developing fault-free reliable software is a daunting task in

the current context, when software is being developed for

problems with increasing difficulty with more and more

complex problem domains (Vashisht et. al., 2015). Many

Software Defection Prediction models have been developed to

fix the problem of defects in software but none of these models

have proven to give accurate results. Machine learning, deep

learning and data mining algorithms have been used to develop

a Software Defect Prediction Model.

Software defect prediction is a process of building classifiers

to predict sections of codes that potentially contain defects,

using information such as code complexity and change history.

The prediction results (i.e., buggy code areas) can place

warnings for code reviewers and allocate their efforts. The code

areas could be files, changes or methods (Moser et. al., 2008).

Machine Learning and Deep learning Algorithms that have

been used for Software. Defect Prediction are Random Forest,

Convolutional Neural Network (CNN), Logistic Regression,

Naives Bayes, K-means, Decision Tree, Support Vector

Machine (SVM), Linear Regression, K-Nearest Neighbors

(KNN) etc. Deep Learning Algorithm is used because it

automatically extracts features for users instead of having to

select features one by one.

A Neural Network is a Deep Learning Technique and the

term “deep” refers to the number of hidden layers in the neural

network. Traditional neural networks only contain 2-3 hidden

layers, while deep networks can have as many as 150. Deep

learning models are trained by using large sets of labeled data

and neural network architectures that learn features directly

from the data without the need for manual feature extraction.

Example of the most popular Neural Networks are Artificial

Neural Network (ANN) and Convolutional Neural Network

(CNN) (Pingel, 2017).

An Artificial Neural Network (ANN) is an information

processing system which contains a large number of highly

interconnected processing neurons. These neurons work

together in a distributed manner to learn from the input

information, to coordinate internal processing, and to optimize

its final output. Fig. 1 shows an Artificial Neural Network,

which is organized in layers.

A

An Improved Model for Software Defect Prediction in

Concurrent Software Systems
ISSN 2047-3338

FARINRE, J. Moyosore, ABIOLA, O. Arowolo and AKINOLA, S. Olalekan 12

Fig. 1: A Neural network organized in layers (Sorokina, 2017)

A Convolutional Neural Network (CNN) is an example of a

deep learning technique. It is a special kind of neural network

for processing data that have a known grid-like topology

(Goodfellow et. al., , 2016), such as time-series data in 1-D grid

and image data in 2-D grid. CNN have been proven to be

successful in many areas such as image classification, speech

recognition, etc. Fig. 2 shows an image of a Convolutional

Neural Network (CNN).

Fig. 2: An image of a Convolutional Neural Network (CNN) (Jianli et. al.,

2017)

Concurrent computation makes programming much more

complex (Cartwright, 2000). In a concurrent program, several

streams of operations may execute concurrently. Each stream

of operations executes as it would in a sequential program

except for the fact that streams can communicate and interfere

with one another. Each such sequence of instructions is called

a thread. For this reason, sequential programs are often called

single-threaded programs.

When a multi-threaded program executes, the operations in

its various threads are interleaved in an unpredictable order

subject to the constraints imposed by explicit synchronization

operations that may be embedded in the code. The operations

for each stream are strictly ordered, but the interleaving of

operations from a collection of streams is undetermined and

depends on the vagaries of a particular execution of the

program. One stream may run very fast while another does not

run at all, a given thread can starve unless it is the only

“runnable” thread (Cartwright, 2000). Fig. 3 shows how a

concurrent program works, with three threads running.

A) Related Works

Software defect prediction is the process of locating

defective modules in software. To produce high quality

software, the final product should have as few defects as

Fig. 3: Image that shows how a concurrent program works (Java Prog.

Tutorial, 2020)

possible. Early detection of software defects could lead to

reduced development costs and rework effort and more reliable

software. So, the study of the defect prediction is important to

achieve software quality. The most discussed problem is

software defect prediction in the field of software quality and

software reliability. Boehm and Basili (2001) observed, finding

and fixing a problem after delivery is 100 times more expensive

than fixing it during requirement and design phase.

Additionally software projects spend 40 to 50 percent of their

efforts in avoidable rework. Therefore, defect prediction is

extremely essential in the field of software quality and software

reliability. Defect prediction is comparatively a novel research

area of software quality engineering.

There has been much research on developing various

software metrics and prediction algorithms to assess software

quality. For example, Lee et. al., (2011) proposed a set of

micro-interaction metrics (MIMs) that leverage developers’

interaction information combined with source code metrics to

predict defects. Meneely et. al., (2008) examine structure of

developer collaboration and use developer network derived

from code information to predict defects. Basili et. al., (2008)

used Chidamber and Kemerer metrics, and Ohlsson and Alberg

(1996) used McCabe’s cyclomatic complexity for defect

prediction. Menzies et. al., (2010) conclude that static code

metrics are useful in predicting defects under specific learning

methods. These techniques, however, focus on sequential

programs while ignoring code attributes and testability for

concurrent programs.

Another work found is the work by Mathews and Tu, (2010)

based on Ada programs. This work considers only the number

of synchronizations and conditional branches that contain

synchronization points without utilizing them to perform defect

prediction. However, this work does not aim to predict

concurrency faults. In addition, the work does not consider

dynamic metrics.

Jianli et. al. (2017) worked on using Convolutional Neural

Network to predict defects in software. This work focused only

on file level prediction. They claim that programs have well-

defined syntaxes and rich semantics hidden in the Abstract

Syntax Trees (ASTs), which traditional features often fail to

capture, and the traditional methods does not really give

satisfactory results. Jianli et. al. used Convolutional Neural

Network combined with Traditional Defect prediction for

predicting defects because it has been proven to automatically

generate features since it can effectively capture highly

complicated non-linear features.

Yu et. al., (2018) developed a model with a combination of

derived metric sets to improve prediction of defects in

International Journal of Computer Science and Telecommunications [Volume 11, Issue 3, July 2020] 13

concurrent software programs. Yu et. al., (2018) named their

model the ConPredictor. The ConPredictor prediction model

was built upon all 24 static and dynamic concurrency metrics.

They empirically compare the performance of ConPredictor to

those of prediction models built using traditional metrics that

have been widely used in previous fault prediction work. They

also investigate whether the combined use of mutation metrics

and source code metrics improve the accuracy of the resulting

prediction model. However, there were few cases where an

instance (i.e., function) is mislabeled as non-faulty. This is

because a concurrency fault may involve more than one

function because the conflicting shared variables may exist in

different functions. A function labeled as non-faulty may have

conflicting accesses with other functions that are labeled as

faulty.

This present study proposes an improved ConPredictor

model for software defect prediction in concurrent program

using deep learning technique. This research work improves on

the existing model of Yu et. al., (2018).

III. METHODOLOGY

The research work was designed in such a way as to allow

for the collection and analysis of defect data from a standard

data source. The data was collected with the aim of identifying

defects using deep learning techniques (Convolutional Neural

Network). The dataset used for the analysis was the one used

by the ConPredictor model. Tyu et. al., (2018) provide a link

(http://cs.uky.edu/_tyu/ConPredictor) to where we can access

the dataset so has to use for further research work.

The data used in this study was gotten from the link where

four large concurrent software projects (Apache, MySQL,

Mozilla, and OpenOffice) were used to build the model. The

module that had concurrent program properties were selected

to identify which particular module has concurrent type of

defects. The dataset was divided into train and test sets and the

model was trained using Convolutional Neural Network

(CNN). The number of defects found in the dataset were

counted and recorded. These data sets were selected because

with millions of lines of publicly accessible code and well-

maintained bug repositories, they have been widely used by

existing bug characteristic studies (Jin et. al., 2012), and

concurrency fault detection and testing techniques (Deng et.

al., 2013).

The proposed methodology for the study is shown in Fig. 4.

The proposed methodology classifies the selected software

modules into defective and non-defective categories. Software

defect prediction helps to identify defective modules in

software, and it reduces the cost of having to fix defects after a

software has been delivered to customer.

A) Nature/Type of Defect Found in the Software Project

The types of defects found in the software projects were the

usual concurrency defects found in concurrent software. These

defects are Live lock, Deadlocks, Hold and wait (Resource

Holding), Starvation. In this study, only these four defects were

considered. The model predicts functions that are likely to

contain concurrency defects in real-world applications.

Specifically, six novel code metrics specific to concurrent

programs were proposed. Concurrency control flow graph

(CCFG) was adapted to generate code metrics involving:

Access Point of Public Thread Variables (APPTV), Number of

Concurrent Conditionals (NCC), Edge Communication value

in CCFG (EC-CCFG), Concurrent Cyclomatic Number (CCN),

Number of Public Variables (NPV) and Number of Interleaved

Operations (NIO) (Yu et. al.,2018).

Fig. 4: The proposed methodology

FARINRE, J. Moyosore, ABIOLA, O. Arowolo and AKINOLA, S. Olalekan 14

Fig. 5. The overall workflow of CNN (Li et. al., 2017)

Eighteen mutation metrics were defined and computed by

applying a variety of mutation operators specific to concurrent

programs. These metrics include six static metrics (e.g., the

number of times a mutation operator is applied) and 12

dynamic metrics from dynamic mutation analysis. The

proposed model was built on these metrics i.e., the six derived

and eighteen mutation metrics.

B) Using Convolutional Neural Network (CNN) to Build the

Improved Model

Convolutional Neural Network (CNN) is primarily used to

classify images. So, there is need to convert our datasets to

vectors so that the CNN can take as input. The Source code

(datasets) is parsed into Abstract Syntax Trees (ASTs) to form

token vectors. Thus, each source file is represented by a token

vector. Then conduct mapping and word embedding converts

the token vectors into numerical vectors and input the

numerical vectors to CNN. CNN will automatically generate

features and classify the dataset into defective and non-

defective. The overall workflow of CNN (Li et. al., 2017) is

depicted in Fig. 5.

The deep learning classifier (Convolutional Neural Network)

was used to make the model learn from the Training set. The

model is tested on the Test set and the performance measures

were calculated. Hence, the dimensionality of the data was first

reduced to a set of 6 cumulated features using 4 different

techniques and then trained the model using Deep learning

classifier. A detailed comparison was then made based on the

performance metrics that include Accuracy, Precision, Recall

and F1-Scores. Anaconda was used as the development

environment alongside Jupyter which is a launch tool for

scientific analysis using Python in the Anaconda environment.

Multiple network architectures were implemented with

different configurations for the auto encoder and the neural

network. Once we carried out the tests, it was found that the

best configuration for the model was the following: 64 hidden

neurons, 0.9 of learning rate, 0.1 for corruption level, and 5000

iterations of training. In the case of the deep leaning

configuration, the best result was adjusted with the following

combination of values: 4 hidden layers, 0.3 of learning rate, 0.9

of momentum factor and 1000 iterations of training.

Our model was applied on the four datasets that were

collected, defective instances were predicted and instances

useful in the dataset were selected.

IV. RESULTS AND PERFORMANCE EVALUATIONS

Table I shows the defective instances found in the four

datasets. In the first dataset, 76 instances were found to be

defective. In the second dataset, 300 instances were found to be

defective. In the third dataset, 138 instances were found to be

defective and 115 instances were found to be defective in the

last dataset. The results of the Accuracy, Precision, F – Score

and Recall of the Model is presented in Table II. From the

Table, it is shown that that the average accuracy for the four

datasets was 75.4% while the precision of the model was

73.9%.

A) Result Comparison

Comparing the performance of our Improved Model with the

ConPredictor model proposed by Tyu et. al., , (2018), Table 3

and Fig. 6 show the results obtained. Tyu et. al., , (2018).

ConPredictor model analysis was done using WEKA as the tool

for analysis. We adopted the same data and metrics used by

Tyru et. al. (2018) but our model was implemented in Python

development environment. From Table 3, it can be deduced

that our Improved Model outperforms the ConPredictor in all

the four-performance metrics used.

Table I: Numbers of defects found in each software projects

Software

Project

Total

Instances

Selected

Instances

Defective

Instances

Dataset 1 35761 2000 76

Dataset 2 71665 2145 300

Dataset 3 144382 4700 158

Dataset 4 110509 6139 120

International Journal of Computer Science and Telecommunications [Volume 11, Issue 3, July 2020] 15

Table II: Result of the Accuracy, Precision, F – Score and Recall for the Model

DATASET ACCURACY PRECISION RECALL F-SCORE

Dataset 1 75.2% 72.5% 74.3% 73.4%

Dataset 2 74.5% 73.4% 72.5% 73.0%

Dataset 3 76.6% 75.7% 73.2% 74.4%

Dataset 4 75.4% 73.9% 73.3% 73.6%

AVERAGE 75.4% 73.8% 73.3% 73.6%

Table III: Comparison Results of ConPredictor against the Improved Model

 ConPredictor Improved Model

Accuracy 72.0% 75.4%

Precision 68.0% 73.8%

Recall 64.0% 73.3%

F1-Score 66.0% 73.6%

Fig. 6: Graph of Result Comparison

Fig. 7: Confusion matrix

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

ACCURACY PRECISION RECALL F-SCORE

ConPredictor
improved Model

4%

17.9

50%

60.7

TP =50%

FP =4%

FN =

17.9%

FARINRE, J. Moyosore, ABIOLA, O. Arowolo and AKINOLA, S. Olalekan 16

B) Confusion Matrix

A confusion matrix, also known as an error matrix, is a two

by two table layout that contains four outcomes produced by a

binary classifier to visualize the performance of the applied

algorithm. It reports the number of false positives (FP), false

negatives (FN), true positives (TP), and true negatives (TN).

Each row of the matrix represents the instances in a predicted

class while each column represents the instances in an actual

class.

Fig. 7 shows the confusion matrix of the performance of our

improved model. It shows that the true positive (TP) “correct

positive prediction” covers 50% of the entire dataset while the

false positive (FP) “incorrect positive prediction” is covers

only 4% of the entire dataset. However, the true positive (TN)

“correct negative prediction” covers 17.9% of the entire dataset

while the false negative (FN) “incorrect negative prediction”

covers 60.7%.

C) Discussion of Results

From the results presented, it was demonstrated that the

improved model reduced the number of false positive in the

datasets compared to the ConPredictor model. For the

improved model, the accuracy was higher because it predicted

more defects in each dataset than the ConPredictor model

predicted. In the first dataset, the improved model predicted 6

defective instances more than the ConPredictor model. In the

second dataset the improved model predicted 70 defective

instances more than the ConPredictor model. In the third

dataset, the improved model predicted 16 defective instances

more than the ConPredictor model. In the fourth dataset the

improved model predicted 4 defective instances more than the

ConPredictor model.

The improved model accuracy was 3.4% higher than the

ConPredictor model, the improved model precision was 5.8%

higher than the ConPredictor model. The improved model

recall was 9.3% higher than the ConPredictor model, the

improved model f1-score was 7.6% higher than the

ConPredictor model. Therefore, the improved model gives a

slightly better performance in all the performance measures

than the ConPredictor model.

V. CONCLUSION

Different software prediction models have been developed

but none has been accurate in predicting defects in concurrent

software systems. Convolutional Neural Network (CNN) was

used to build the improved model and static and dynamic

metric was generated to help predict defects better in

concurrent software system. The CNN was used because it has

been established that it builds better prediction model and

because of the unpredictable and non-deterministic properties

of concurrent software system; Convolutional Neural Network

(CNN) has been proven to work well for these kinds of trends.

In this study, Convolutional Neural Network (CNN) was

used to build an improved model while static and dynamic

metrics were generated to help predict defects better in

concurrent software system. The performance of the model was

evaluated against the existing model using performance

measures like accuracy, precision, recall and f1-score. This

model developed could be improved upon by using other deep

learning algorithms to build a prediction model.

REFERENCES

Basili V. R, Briand L. C, and Melo W. L (2008). A validation of object-

oriented design metrics as quality indicators. IEEE Transactions on

Software Engineering, Vol. 22, Number 10, pp: 751–761.

Boehm, B. W. and Basili, V. R. (2001). Software Defect Reduction Top

10 List, IEEE Computer, pp: 135-137.

Cartwright, R.C. (2000). Notes on Object Oriented Program Design.

https://www.cs.rice.edu/~cork/book/newBook.html. Retrieved June

2019.

Deng D, Zhang W, and Lu S (2013). Efficient concurrency-bug detection

across inputs. In Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented Programming Systems

Languages & Applications, pp:785–802.

Goodfellow I, Bengio Y, and Courville A (2016), Deep Learning. MIT

Press, http://www.deeplearningbook.org.

Java Programming Tutorial, Multithreading & Concurrent

Programming.

https://www.ntu.edu.sg/home/ehchua/programming/java/J5e_multit

hreading.html, accessed June 2020.

Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu (2017), Software

Defect Prediction via Convolutional Neural Network. Department of

Computer Science and Engineering, The Chinese University of Hong

Kong, China. IEEE International Conference on Software Quality,

Reliability and Security.

Jin G, Song L, Shi X, Scherpelz J, and Lu S (2012). Understanding and

detecting real-world performance bugs. In PLDI, pp: 77–88.

Li J, He P, Zhu J, and Lyu M, (2017). Software Defect Prediction via

Convolutional Neural Network. IEEE International Conference on

Software Quality, Reliability and Security, pp: 318-328.

Mathews M. E and Tu S. (2010). Metrics measuring control flow

complexity in concurrent programs. IEEE Transactions on

Computers, Vol 3, Issue 5, Page 5

Meneely A, Williams L, Snipes W, and Osborne J (2008). Predicting

failures with developer networks and social network analysis. In

Proceedings of the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 13–23.

Menzies T, Greenwald J, and Frank A (2010). “Data mining static code

attributes to learn defect predictors”. IEEE Transactions on Software

Engineering, Vol 33, Number 1, Pages 2–13.

Menzies T, Greenwald J, and Frank A (2017). Data mining static code

attributes to learn defect predictors. IEEE Transactions on Software

Engineering, 33(1):2–13.

Moser R, Pedrycz W, and Succi G (2008), “A comparative analysis of the

efficiency of change metrics and static code attributes for defect

prediction,” in ICSE’08: Proc. of the International Conference on

Software Engineering.

Ohlsson N and Alberg H (1996). Predicting fault-prone software modules

in telephone switches. IEEE Transactions on Software Engineering,

Vol 22, Number 12, Pages 886–894.

Parameswari A, (2015). Comparing Data Mining Techniques for Software

Defect Prediction, International Journal of Science and Engineering

Research (IJ0SER), Vol 3 Issue 5 May -2015.

Pingel J (2017). Machine Learning vs Deep Learning: What’s the

Difference? https://itbriefs.com.au. Accessed May 2019.

Sorokina Ksenia (2017). Image Classification with Convolutional Neural

Networks, https://medium.com/@ksusorokina/image-classification-

with-convolutional-neural-networks-496815db12a8, Accessed May

2020.

Vashisht V, Lal M, Sureshchandar G. S (2015). A Framework for

Software Defect Prediction Using Neural Networks. Journal of

Software Engineering and Applications, Vol. 8, 384-394.

Yu T, Wen W, Han X, and Hayes J (2018). ConPredictor: Concurrency

Defect Prediction in Real-World Applications. In IEEE International

Conference on Software Testing, Verification and Validation,

pp: 168–179, 2018.

https://www.ntu.edu.sg/home/ehchua/programming/java/J5e_multithreading.html
https://www.ntu.edu.sg/home/ehchua/programming/java/J5e_multithreading.html
https://medium.com/@ksusorokina?source=post_page-----496815db12a8----------------------
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8

