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Abstract– In this paper we introduce and investigate the 

performance of an efficient normalization of features extracted 

from signals of vowels, into fixed-length features vectors, in the 

context of vowels classification by kernel machine learning 

methods.  The proposed models capture the speech signal and 

extract features vectors of the same size, over the entire vowel 

segment. In this work, we propose three approaches based on 

signal segmentation to windows, in the extraction of MFCC 

coefficients. In the aim to produces a compact size, yet wealthy 

and informative training dataset, also to give state of the art 

vowels classification results. To improve the performance of the 

proposals approaches, we are opted to use support vector 

machine method for vowels classification, due its performance in 

machine learning.  Recognition rates of 58.76%, 58.85% and 

61.19 %, on the 20 vowels of TIMIT corpus was achieved by the 

three approaches, for handling the multi category nature of 

vowels classification, using SVM method with one-versus-one 

and one-versus-all strategies.  Encouraging results have been 

achieved with 20 vowels of TIMIT datasets. 

 

Index Terms– Features Extraction, MFCC, Classification and 

Support Vector Machine Multiclass  

 

I.    INTRODUCTION 

UTOMATIC Speech Recognition (ASR) has been the 

focus of both the machine learning and speech 

communities for the past few decades due to its 

importance in any conceivable man machine interface (MMI).  

However, because of the large variability in the way humans 

communicate and the background noise corrupting the speech 

signal, ASR is considered perhaps as the most difficult and 

challenging problem to be solved for many years to come. 

Speech recognition is usually accomplished in two main steps. 

The first one consists of extracting a set of useful, yet 

compact, features that capture important characteristics of 

speech data. It is followed by the recognition step where the 

features, obtained in the previous one, are fed into a classifier 

for word prediction in the case of speech recognition, or 

simply the phonetic class in phonetic recognition. It is 

difficult to imagine constructing good recognizers with low  

 

quality features on one hand and on the other hand, if feature  

extraction is carried out to perfection, then the patterns are 

easily distinguishable and consequently, one can obtain good 

recognition results even with simple and naïve machine 

learning algorithms.   

Moreover, both steps must be performed faster than the 

speech sampling rate in order for the recognition to be carried 

out in real time. Most of the successful approaches for speech 

feature extraction are based on the standard Mel Frequency 

Cepstral Coefficients (MFCC) extracted for successive and 

overlapping windows.  

Many approaches have been proposed towards the goal of 

improving the performance of ASR. The first class of such 

methods [1]–[4] focuses on new techniques for feature 

extraction. In the second class, keep the MFCC features along 

with derivative information, but use novel powerful 

discriminative methods [5]–[7].  

Our contribution falls within the third class of methods 

which use some combination of MFCC along with powerful 

discriminative methods.  

The remainder of the paper is organized as follows. In 

section I, we introduce this work, in section II, we discuss 

some related successful methods for feature extraction. In the 

following section, large margin kernel methods will be briefly 

discussed for phonetic classification. In section IV we 

introduce related work of SVM for phonetic classification. In 

section V, we introduce our contribution feature extraction, 

i.e., variable window step and variable window size 

framework, in the next section we give the best results of 

extensive experiments on the TIMIT data base using a variety 

of kernels and kernel based classification methods. Finally, 

the last section is devoted to conclusions and some remarks 

pertaining to future work. 

II.  FEATURE EXTRACTION METHODS FOR 

PHONETIC CLASSIFICATION 

Phonetic classification (PC) is concerned with the 

prediction of the phoneme class given a set of   appropriate 

features that are extracted from the signal. In (PC), it is 
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assumed that the phoneme boundaries have been already 

determined by some method. It is considered as a first step 

towards speech recognition. The most commonly used 

features for ASR is the Mel Frequency Cepstral Coefficients 

(MFCC) [8]. They are extracted on a frame by frame basis 

with fixed overlap between successive windows and 

characterize the spectral envelope in a short-time frame 

(typically 10ms) of speech. Despite their popularity, they 

suffer from many drawbacks such as their failure to capture 

the spectral frame itself as well as the inherent dynamic 

information.  

Many attempts and references therein, have been made to 

overcome MFCC’s shortcomings and promising alternative 

frameworks have been introduced for phonetic classification. 

[9] was the first to suggest the inclusion of MFCC derivatives 

in an attempt to capture the dynamic information. [3] 

proposed wavelet filter bank framework for phonetic 

classification and the authors reported 23.9 % error rate on 

TIMIT development set. [4] proposed linear discriminate 

analysis to automatically extract the dynamic information 

from neighboring static features and reported 29.41% error 

rate on the complete 39 phonemes test set of TIMIT corpus. 

[7] Proposed a segmental modeling framework for CDHMM 

and the authors reported 32.60% error rate on the same 

corpus. [1] Proposed nonlinear component analysis for 

computing a statistically independent set of features for 

CDHMM and an error rate of 26.3% was achieved on the 

same corpus, outperforming that obtained by MFCC by 2%. 

Recently, [10] suggest a completely different approach based 

on recent progress in computational visual neuroscience. 

Although the error rate obtained for TIMIT vowels is 

somehow worse than the one obtained using conventional 

MFCC and the same RLSC algorithm, this approach may be 

improved and will compete with the MFCC paradigm. 

III.  SUPPORT VECTOR MACHINES 

The main idea of binary SVM is to implicitly map data to a 

higher dimensional space via a kernel function and then solve 

an optimization problem to identify the maximum-margin 

hyper-plane that separates training instances [11]. The 

separator is based on a set of boundary training examples. 

Kernels can be interpreted as dissimilarity measures of pairs 

of objects in the training set X . In standard SVM 

formulations, the optimal hypothesis sought is of the form (1). 

 

φ(x) = ∑ αik(x, xi)          (1) 
 

Where 𝛼𝑖  are the components of the unique solution of a 

linearly constrained quadratic programming problem, whose 

size is equal to the number of training patterns. The solution 

vector obtained is generally sparse and the non-zero 𝛼𝑖′s are 

called support vectors (SV’s). Clearly, the number of SV’s 

determines the query time which is the time it takes to predict 

novel observations and subsequently, is critical for some real 

time applications such as speech recognition tasks. It is worth 

noting that in contrast to connectionist methods such as 

neural networks, the examples need not have a Euclidean or 

fixed-length representation when used in kernel methods. 

The training process is implicitly performed in a 

reproducing space in which 𝑘(𝑥, 𝑥𝑖) is the inner product of 

the images of two examples  𝑥, 𝑦. Moreover, the optimal 

hypothesis can be expressed in terms of the kernel that can be 

defined for non-Euclidean data such biological sequences, 

speech utterances etc. Popular positive kernels include the 

Polynomial (2) and the Gaussian (3), kernels: 

 

k(xi, xj) = (γxi
Txj + c)

d
, γ > 0     (2) 

k(xi, xj) = exp (−γ‖xi − xj‖
2

) , γ > 0       (3) 

 

A). SVM Formulation 

Given training vectors 𝑥𝑖 ∈ ℜ𝑛, 𝑖 = 1, . . , 𝑚, in two classes, 

and a vector 𝑦 ∈ ℜ𝑚 such that 𝑦𝑖 ∈ {1, −1}, support vector 

classifiers [12, 11, 13]  solve  the following linearly 

constrained convex quadratic programming problem: 

 

maximize    W(α) ∑ αi −
1

2
∑ αiαjyiyjk(xi, xj)

i,j

m

i=1    
 

subject to   
∀i  0 ≤ αi ≤ C
∑ αiyi = 0m

i=1
   (4) 

The optimal hypothesis is: 

f(x) = ∑ αiyik(x, xi)
m
i=1 + b      (5) 

 

Clearly, the hypothesis 𝑓 depends only on the non-null 

coefficients 𝛼𝑖  which correspond to the Support Vectors 

(SVs). The quadratic programming (QP) objective function 

involves the problem Gram matrix 𝑘 whose entries are the 

similarities 𝑘(𝑥, 𝑥𝑖) between the patterns x and 𝑥𝑖. 

B). SVM Multiclass Extension 

Many real applications consist of multiclass classification 

problems. Unfortunately, SVM is intrinsically bi-class and its 

efficient extension to multiclass problems is still an ongoing 

research issue. Several frameworks have been introduced to 

extend SVM to multiclass contexts and a detailed account of 

the literature is out of the scope of this paper.  

The most common way to build a multiclass SVM is to 

combine several sub-problems that involve only binary 

classification. This idea is used by various approaches as 

One-Versus-All (OVA), One-Versus-One (OVO) [11] and 

Directed Acyclic Graph (DAGSVM) [14]. 

In OVA strategy, 𝐾  binary classifiers are constructed, 

where 𝐾 is the number of classes. The classifier is trained by 

labeling all the examples in the class as positive and the 

remainder as negative. The final hypothesis is given by the 

formula: 

 

fOVA(x) = argmaxi=1..K(fi(x))     (6) 

 

In the second strategy, OVO proceeds by training 
𝐾(𝐾−1)

2
 

binary classifiers corresponding to all the pairs of classes. 

The hypothesis consists of choosing either the class with 
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most votes (voting). In Directed Acyclic Graph (DAGSVM), 

each node of graph represents a binary classifier (DAGSVM). 

IV.  RELATED WORK OF FEATURE       

EXTRACTION 

SVM using standard kernel cannot deal directly with 

variable length or sequential data such as speech patterns. 

Early implementations attempted to incorporate dynamic 

information by a hybridization with HMM [15]. In [16], a 

novel kernel based on Fisher score was introduced and the 

authors report some positive results. An interesting 

implementation of SVM for speech patterns which performs 

frame wise classification was studied in [17]. It is worth 

while mentioning here that this approach has the advantage of 

not using phoneme boundaries information and at the same 

time it can be implemented with standard kernels. However, 

the size of the training set produced by this method is huge 

and the authors were forced to use only a portion of the data 

set for training. They estimated six years of CPU training 

time for the full TIMIT set. [18] implemented SVM for 

phonetic classification by using a 3-4-3 rule for producing a 

fixed-length feature vector from the MFCCs.  

The authors report an unusually high recognition rate 

which we were not able to reproduce. Finally, [19] used linear 

RLSC for the classification of TIMIT phonemes. 

V.  REGULARIZATION OF FEATURE     

EXTRACTION 

In this work, we propose three approaches to calculate an 

adaptive MFCC features for kernel Gaussian methods. Our 

contribution is based on fragmentation step in MFCC process.  

In general, standard MFCC are extracted for 25 

milliseconds Hamming windows and 10 milliseconds overlap. 

The feature vector obtained is of dimension 12 plus an energy 

term. In this work, the TIMIT datasets contains over 1 million 

examples, are used to perform the frame wise classification.  

Initially, we fix the number of frame (or window) at five; 

five is the mean of all signals or vectors. We have three 

approaches: 

A). First approach 

In this approach, we fix the window (frame) size, and we 

find the overlap adequate for each phoneme, in order to 

obtain same, the size for all training and test datasets. For this 

approach, we fixed the window size for 25 and 30 

milliseconds and determinate the overlap by the formula 7, in 

term of windows step, as shown in the Fig. 1. 

In order to keep the size of the training set tractable for 

kernel methods and take into account the speech dynamics, a 

natural approach would be to keep the window size fixed and 

set the window step according to the duration of the phoneme. 

The window step (overlap) length is computed as: 

 

𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑆𝑡𝑒𝑝 = (𝐿𝑒𝑛𝑔𝑡ℎ(𝑆𝑖𝑔𝑛𝑎𝑙) − 𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑆𝑖𝑧𝑒)/𝑛𝐹 
         (7) 

 

Where 𝑛𝐹 stands for the average number of frames. In 

our experiments 𝑛𝐹 was set to 5 resulting in feature vectors 

of dimension 65 and no derivatives were added. 

 

 
 

Fig. 1: Illustration of the first approach 
 

B). Second approach 

In this second approach, we fix the overlap between two 

consecutives windows (or frames) in the aim to keep 

continuous of each signal i.e., regular concatenation of 

windows, size, and we find the window size adequate for 

each phoneme, in order to obtain same the size for all training 

and test datasets, in our case 65 feature.  

An overlap of 10 and 12 milliseconds is selected for this 

approach and the formula 8 is used to calculate the window 

size, as shown in Fig. 2. 

 

 
 

Fig. 2: Illustration of the second approach 

 

The window size length is computed as follow: 

 

WindowsSize = 

 Length(Signal) –  Overlap ∗  nF  (8) 

 

Where nF stands for the average number of frames. In our 

experiments nF was set to 5 resulting in feature vectors of 

dimension 65 and no derivatives were added. 

C). Third approach 

This approach is mixed approach of the two first 

approaches, in the aim to minimize the big overlap between 

two consecutives windows (or frames) and minimize the 

redundancy of date in windows, i.e., adequate segmentation 

for each signal phoneme, in order to obtain same the size for 

all training and test datasets, as shown in Fig. 3. 

Windows Step=10 ms 

Signal  

(ms) 

Windows size 

Signal  

(ms) 

Windows size = 25 ms 

Windows Step 
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Fig. 3: Illustration of the third approach 
 

V. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

In our experiments with the normalization of features 

extraction framework, or the variable window step feature 

extraction and variable window size feature extraction, we 

performed our experiments on the TIMIT corpus. The labels 

of 20 vowels of [19] is used in our experiments, as follow : 

{[aa], [aw], [ae], [ah], [ao], [ax], [ay], [axr], [ax-h], [uw], [ux], 

[uh], [oy], [ow], [ix], [ih], [iy], [eh], [ey], [er]}. The features 

extraction or MFCC coefficients are calculated by Auditory 

Toolbox version 2 [20]. 

 In all the experiments reported below, we performed    

3-fold cross validation for tuning SVM hyper parameters g 

and C. The GNU LibSVM [21] software was used for SVM, 

with one versus one (OVO) and One versus All (OVA) multi-

classes strategies. All the experiments were run on standard 

Intel i3 3.40 GHZ with 12 Go of memory running the 

Windows 7 operating system.  The following tables 

summarize our results. 

Table I – Table III summarize the best results obtained in 

the experimentation phase. The parameters of SVM used in 

our work are: T; kernel type; takes the flowing values, 

Gaussian (2), C; regularization parameter of SVM, g; 

Gaussian kernel parameter. The C and g were calculated by 

cross-validation. Time (s) is time of prediction or test, 

error(\%) is the error rate of prediction. The data sets are 

experimented for the OVA and OVO multi-class SVM.  

The test rate of prediction is the accuracy, it’s used as a 

statistical measure of how well a classification test correctly 

identifies.  Accuracy is the proportion of true results (both 

true positives and true negatives) among the total number of 

cases examined, that is: 

 

Accuracy =
true positives+true negatives

total number
   (9) 

 

It is clear that the proposed approaches had given an 

important improvement on recognition rate. As shown in    

Fig. 4, the third approach gave the better results, for CPU 

time all approaches give similar results, as shown in Fig. 5. 

Finally, we believe that the results obtained are encouraging 

step to improve the performance of the phonetics recognition. 
 

 
 

Table I. Approach one results for 20 phonemes 

 

Window 

size (ms) 

Testing rate  

(%) 

CPU Time 

(s) 

 

# Test 

patterns 

# SV 

30 57.54 101.30  15981 37450 

30 58.76 84.55 
 

15981 32475 

30 58.71 96.38 
 

15981 32433 

30 58.55 92.31 
 

15981 32467 

25 57.71 98.71 
 

16395 38366 

25 58.60 113.68 
 

16395 32733 

25 58.79 106.89 
 

16395 33634 

25 58.56 96.27 
 

16395 32839 

# Test patterns: number of examples used in the test. 

# SV : number of support vectors. 

All experiences is realized with OVA and OVO multiclass SVM. 

 
Table II. Approach two results for 20 phonemes 

 

Window 

step (ms) 

Testing rate  

(%) 

CPU Time 

(s) 

 

# Test 

patterns 

# SV 

10 57.87 101.31  16080 37304 

10 58.71 118..27  16080 32597 

10 58.73 85.63  16080 32543 

10 58.87 89.61  16080 31916 

12 57.21 87.39  15345 35625 

12 58.52 77.31  15345 30498 

12 58.29 81.27  15345 30564 

12 58.32 83.46  15345 30589 

# Test patterns: number of examples used in the test. 

# SV : number of support vectors. 

All experiences are realized with OVA and OVO multiclass SVM. 

 
Table III. Approach three results for 20 phonemes 

 
multiclass 
SVM 

Testing rate  

(%) 

CPU Time 

(s) 

 

# Test 

patterns 

# SV 

OVO 61.17 101.31  16207 32108 

OVO 60.91 85.80  16207 32414 

OVO 60.96 115.94  16492 32586 

OVO 60.94 89.76  16492 32716 

OVO 60.76 97.88  16492 31787 

OVA 59.71 117.34  16207 37387 

OVA 60.20 95.92  16207 36723 

# Test patterns: number of examples used in the test. 

# SV : number of support vectors. 

 

 

 
 

Fig. 4: Variation of error rate for different approaches 

55

56

57

58

59

60

61

62

1 2 3 4 5 6 7

Approch 1 (%) Approch 2 (%) Approch 3 (%)

Windows Step 

Signal  

2 (ms) 

Windows size 



International Journal of Computer Science and Telecommunications [Volume 10, Issue 6, December 2019]               5 

 
 

Fig. 5: Variation of recognition time for different approaches 

VI.   CONCLUSION 

We introduced and implemented efficient approaches for 

phonetics feature extraction. In otherwise, we propose a 

simple normalization for vocal signals, in aim to obtain 

vectors or features of identical size, in order to apply 

classification with SVM machine. The variable window step 

and window size paradigms were shown through extensive 

experiments to achieve state of the art results in terms of 

accuracy. However, as can be seen from the results, testing 

rate and testing times are still excessive preventing SVM 

from being used in speech recognition at least for the time 

being. We believe that in order to improve automatic speech 

recognition technology, more research efforts should be 

invested in developing general purpose efficient machine 

learning paradigms capable of handling large scale multi-

class problems. 
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