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Abstract– Road congestion is an optimization problem because 

of the difficulty it poses and its high unpredictable nature. 

Simulated Annealing (SA) and Genetic Algorithm (GA) have 

been applied to optimization problems; however, trade-offs exist 

as to which of the algorithms converges faster and the cost 

attached.  Searching the optimal solution to the problem domain 

within a reasonable period is also a problem. This study is 

focused on performance evaluation of GA and SA as applicable 

to a crossroad and an adjoining T-junction Traffic congestion 

problem. The algorithms were simulated and implemented with 

MATLAB. The fitness values and traffic decongestion times for 

10 cycles were measured. Statistical T-test was then used to 

compare their performances. The result showed that there was 

higher decongestion time in SA compared to GA with the peak 

values of 51 and 48 seconds respectively. The statistical test 

showed that, even though there were mean differences between 

the two techniques, there were no statistical significant 

differences between their performances.  

 

Index Terms– Simulated Annealing, Genetic Algorithm and 

Road Traffic Congestion 

  

I.    INTRODUCTION 

N 1982, the method of Simulated Annealing (SA) was 

introduced by Kirkpatrick et al., [1]. Initially, it was very 

popular for Integrated Circuit (IC) chip design but now it 

has a wide range of applications -timetable problem, graph 

partitioning and transportation systems. Simulated Annealing 

(SA) is one of the divisions of Artificial intelligence (AI) in 

Computer Science. Generally, SA is a probabilistic method 

for finding the global minimum of a cost function that may 

have several local minima [2]. According to Jeff [3], 

Simulated Annealing is defined as a programming method 

which tries to simulate the procedure of annealing – a 

physical process for cooling solids slowly. This occurs at a 

minimum energy configuration.  

One of the advantages of SA is that it converges to the 

optimum solution of any optimization problem. It also works 

as a hill-climbing search method that allows moves in less 

good goal directions once in a while to escape local minima. 

However, the algorithm is usually not faster than its 

contemporaries [4].  Talking about the applications of SA, 

Johnson et al. [5], [6], [7], as cited in Dimitris and John [2], 

discuss the performance of SA on four problematic areas: 

travelling salesman problem (TSP), graph partitioning 

problem (GPP), graph colouring problem (GCP) as well as 

number partitioning problem (NPP).  The researchers (i.e., 

Johnson et al) apply SA to these NP-hard problems by means 

of a cooling schedule in which the temperature decreases in a 

geometric progression, namely, T(t+1) = rT(t).  

On the other hand, Genetic Algorithm (GA) was invented 

by Goldberg with the motivation from Darwin's theory of 

evolution. Genetic algorithm was first developed in the mid-

1960s [8] and it is an area of Artificial Intelligence (AI). The 

possible solutions to a problem are referred to as 

chromosomes and a diverse set of chromosomes is grouped 

into a gene pool. The worth of these solutions is determined 

using a fitness function, and this quality is used to determine 

whether or not the chromosomes will be used in producing the 

next generation of chromosomes. The contents of high quality 

solutions are more likely to continue into the next generation. 

The next generation is generally formed via the processes of 

crossover, combining elements of two chromosomes from the 

gene pool, and mutation, by randomly altering elements of a 

chromosome. In terms of application, Genetic algorithms are 

widely used for finding good excellent solutions for a diverse 

variety of difficult problems in science, engineering and 

mathematics [9], [10] as cited in Steven and Brian, [11].  

In other words, GA is an adaptive stochastic search 

algorithm. Stochastic searches are those that make use of 

probabilities to help achieve their searches. They are usually 

referred to as function optimizers in the literature [12]. GA is 

a family of models used in computation. These algorithms 

encode a possible solution to a given problem on a simple 

chromosome-like data structure and subsequently apply 

recombination operators to these structures to preserve critical 

information. The areas of application of the GA are – image 

processing, pattern recognition, machine learning, road traffic 

management and so on [13]. Furthermore, the possibility to 

use genetic algorithms to solve real world problem has been 

tested and evaluated by the researchers.  Gustaf [14] applied 

the concept to road traffic management. This researcher 

considered the standard genetic algorithm. Genetic algorithms 

are stochastic and the goal is to achieve best results.  They 

typically consume many resources in terms of CPU time and 

memory size. 
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II.    SYSTEM OVERVIEW 

A) The Interface Development  

The interface was developed with MATLAB. It consisted 

of a GUI (Graphical user Interface) with a collection of tools 

– pushbutton, check boxes; drop-down buttons, edit buttons, 

axes and option boxes as shown in Fig. 1. The model 

functioned after following these procedures. The user first 

checked the type of algorithm to use (SA or GA), then the 

number of cycle was entered in the box. Then, the user clicks 

the calculate button to begin the program.   

B) Design Constraints 

One of the design constraints in the design is the signal 

indicators. The signal indicators consisted of ‘red’ and ‘green’ 

lights. Red and Green light indicators were used for the 

implementation because of the trade-off between signal and 

lines of codes. The assumptions made during the system 

design were:  

a) That the lengths or widths of lanes were equal  

b) That traffic decongestion was dependent on time  

c) That the lanes were doubled 

d) That the road users had equal priorities  

e) The traffic queue involved generation of pseudorandom 

numbers to substitute for the number of vehicles in the 

real-world scenario. The intersection consisted of a 

cross-road and an adjoining T-junction. 

f) That there was no bulb or other device failure   

g) That the system was interface driven 

C) System Architecture  

System Hardware Architecture  

The traffic flows depicted in Fig. 1 were implemented on 

Microsoft Windows 7 Professional (Version 6.1.7601 Service 

Pack 1 Build 7601); System Model: HP 630 Notebook PC; 

System Type: X86-based PC; processor: Intel(R) Pentium(R) 

CPU B960 @ 2.20GHz, 2200 MHz, 2 Core(s), 2 Logical 

Processor(s) and Main memory of 2048MB. 

System Software Architecture  

Standard Simulated Annealing Flowchart: The original SA 

flowchart as presented by Luke [15] was modified to solve the 

problem of traffic congestion in this study. It begins with the 

initial solution to the problem given, which is also the Best 

solution so far, and the temperature set at the initial 

temperature Temp (i).This solution becomes the Current 

solution and the Parent or active solution. The number of 

Monte Carlo (ITRY) simulation attempts was set to 0. 

ITRY is incremented by 1 and is tested to see if it has 

reached the maximum number of attempts at this temperature. 

If so, the current temperature is checked. If it is equal to the 

final temperature, Temp (f), the simulation halts and both the 

final and the Best solutions found during the simulation are 

obtained. If the current temperature is above the final 

temperature, it is reduced using a cooling schedule. The 

number of Monte Carlo attempts (ITRY) is reset to 1. 

 

 

 
  

Fig. 1: The Developed model’s Interface 
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Fig. 2: The Modified SA Flowchart 
 

 

If the number of attempts at this temperature has not been 

reached, or the temperature has been decreased, the Parent 

solution is modified to generate a New solution.  If the energy 

of the New solution is lower than that of the Parent, it is 

checked to see if it is the Best solution found to date. If it is, it 

is stored separately. Whether or not it is the Best, it becomes 

the new Parent solution for the next Monte Carlo step. 

Whenever the Parent solution is updated, so is the Current 

solution.   

If the energy of the New solution is higher than the Parent's 

by an amount dE, the Boltzmann probability (e
-dE/kT

 where k 

is Boltzmann's constant and T is the current temperature) is 

calculated. If this probability is greater than a random number 

(Ran) between 0.0 and 1.0 this New solution is accepted and 

becomes the Parent solution for the next iteration, and the 

Current solution. On the other hand, if the Boltzmann 

probability is less than Ran, the New solution is rejected and 

the Current/Parent solution stays the same and is used in the 

next iteration.  

 

ALGORITHM 1: The Standard SA Algorithm (Mohammad, 

2008) 

1. s = Generate_Initial_Solution() 

2.  T = T_0 

3.  WHILE termination conditions not met 

4.       s1 = Pick_At_Random(N(s)) 

5.       IF f(s1) < f(s) 

6.              s = s1 
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7.      ELSE 

8.            Accept s1 as new solution with probability 

p(T,s1,s) 

9. ENDIF 

10.     Update(T) 

11.   ENDWHILE  

 

ALGORITHM 2: Modified SA Algorithm  

1. Initialization: The number of cycles C = 0 

2. Randomization: check for the busiest lane using 

pseudorandom function; 

3. Check for the busiest of the lanes;  

4. Activate RED or GREEN signal as applicable to the 

busiest lane  

5. While C<=N do  

6.         Generate fitness value and decongestion time 

(tDecong) for the active lane;  

7.        Repeat 

8.           Randomize new set of numbers;  

9.           For k = 0 to kmax do  

10.                Temperature = (
 

    
   )

q 

11.                  mu = 10^(Ti*100); kmax = 100; q=1; 

fx1=feval (f,x1); df = fx1-fx;  

12.         until lower boundary is reached; 

13.    stop;  

 

The Standard Genetic Algorithm: Kenneth [16] presented 

the flow diagram of the standard Genetic Algorithm 

procedure. The standard flow diagram was modified to solve 

the problem of road traffic congestion. The modified 

flowchart is depicted in Fig. 3 Genetic algorithm implements 

the genetic algorithm at the command line to minimize an 

objective function. 

The genetic algorithm uses three main types of rules at each 

step to create the next generation from the current population: 

(i) Selection rules select the individuals, called parents, 

which contribute to the population at the next 

generation.  

(ii) Crossover rules combine two parents to form 

children for the next generation.  

(iii) Mutation rules apply random changes to individual 

parents to form children.     

 

In this study, the following functions and variables were 

used: 

(i) Function chrms2 = crossover(chrms2, Nb):This 

created crossover between two chromosomes 

(ii) Stopping criteria: This was set at maxit=100;  

(iii) Popsize:  The set population size was 20 

(iv) Mutate: Represented with 0.1 

(v) The selection was set at 0.5 

 

ALGORITHM 3: The Modified GA  

1. Start  

2. Generate  initial population [1..20] in the current 

population  

3. Compute fitness for individuals 1..n in the current 

population  

4. Specify selection probability (sProb) = 0.5; mutation 

rate (mrate) = 0.25, and crossover rate (cRate) = 0.75 

5. While fit_value of chromosome >= sProb do  

6.       Perform crossover  

7.       Perform mutation  

8.       New chromosome (offspring) 

9.        Return result  

10.   Stop  

 

 

 

 
 

 
Fig. 3: The modified GA Flow diagram 

 

 

 

Generate initial population size [1..20] 

Compute fitness for Individual 1..20 in 

the current population  

Save FitValues for Individual 1..N in the 

current population  

Specify selection probabiliy sProb = 0.5; 

mRate = 0.25;  

cRate = 0.75  

While (FitValue of chromosome >=sProb) DO 

Perform crossover 

Perform mutation  

New chromosome (offspring) 

Return Result 
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III.    RESULTS AND DISCUSSION 

A) Results for Simulated Annealing  

From Fig. 4, when a user selects the algorithm to use, for 

instance,  SA, the arrow shows the direction of movement of 

vehicles generated randomly (i.e., North, South, East and 

West). The simulation result reported the system time for 

every instance (during same cycle). From the same Figure, the 

number of cycle entered was 10. At the end of the cycle the 

decongestion time was recorded alongside the fitness 

function. The maximum number of routes or directions for 

distribution of vehicles was five. 

However, Table I shows that cycle four had the highest 

decongestion time, while equal time occurred at cycles nine 

and ten. From the second column of Table I, it was observed 

that the minimum and maximum fitness functions occurred at 

cycles seven and nine respectively. It was deduced that, cycle 

four (4) took the highest decongestion time of 51s.  

 

 

 
 

Fig. 4: Traffic simulation at C= 10 (Simulated Annealing) 

 

 
Table I:  Fitness Value vs. Time to Decongest in SA 

B) Results for Genetic Algorithm 

Just like in Fig. 4, the user selects the algorithm to use (GA) 

from the interface. The arrows show the direction of 

movement of vehicles generated randomly (i.e., North, South, 

East and West). The simulation result recorded the system 

time for every instance (during same cycle). From the same 

figure, the number of cycle entered was 10. At the end of the 

cycle the decongestion time was recorded alongside the 

fitness function (Table II). The maximum number of 

distributed routes was equally five as in the first case. It was 

observed that there were closeness in values of decongestion 

time at Cycles 1, 4, 8 and 10. There existed, equal fitness 

values at Cycles 8 and 9 as shown in Table II. In addition, the 

fitness values generated were all between the range – 0.2000 

and 0.2357. 

 
Table II:  Fitness Value vs. Time to Decongest in GA 

Cycle 

Decongestion 

Time td (s) Fitness function 

1 48.0 0.2335 

2 18.0 0.2337 

3 11.0 0.2336 

4 48.0 0.2341 

5 18.0 0.2401 

6 27.0 0.2341 

7 14.0 0.2357 

8 47.0 0.2340 

9 35.0 0.2340 

10 47.0 0.2349 

Cycle 

Decongestion Time td 

(s) Fitness function 

1 11.0 0.04103 

2 9.0 0.02167 

3 30.0 0.34140 

4 51.0 0.08911 

5 15.0 0.23800 

6 50.0 0.47010 

7 40.0 0.00002 

8 11.0 0.16500 

9 6.0 0.78180 

10 6.0 0.57760 
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Fig. 5: Decongestion times in GA and SA for the Cycles 

 

 

 
 

Fig. 6: Fitness values in SA and GA for the Cycles 

 

 

With reference to Fig. 5, the period of decongestion under 

simulated annealing was higher as against the genetic 

algorithm considering their peak values of 51 for SA and 48 

for GA. This probably confirms Mohammad (2008) and other 

researchers that support the declaration that SAs are usually 

slower than their contemporaries. 

With reference to Fig. 6, it is observed that GA curve is 

almost linear, while that of SA is sinusoidal, which also 

probably shows that the convergence of SA is slower to GA; 

hence, corroborating Mohammad [4] as highlighted in the 

literature. 

 

IV.    DISCUSSION OF RESULTS 

The Comparison of the optimization methods GA and SA 

to enhance Road Traffic Management is presented here. The 

control parameter values for all the optimization algorithms 

are given thus: 

i. GA:  Population size  = 50, generations = 100, 

crossover probability = 0.05, mutation probability  =  

0.5. 

ii. SA: Generations = 300, initial cooling temperature = 

100 and cooling constant = 1, lower bound  =  -5 and 

upper bound  = 5. 
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From the simulation results, it was shown that simulated 

annealing does not outperform genetic algorithm (Fig. 5 and 

Fig. 6). Considering Table 1, when C = 1, the decongestion 

time for SA is higher geometrically in comparison to GA. 

Meanwhile at the second cycle (i.e., C = 2), it was observed 

that the value generated for decongestion time declined 

sharply (by one third) and the highest time is seen at C = 4. 

By checking the fitness value at C =1 and 2, it was observed 

that there is an inverse proportion between the decongestion 

time and fitness function and irregular in some. Likewise, the 

value of the fitness functions generated were almost 

negligible (i.e., <<<0) in the simulated annealing result. Equal 

decongestion time was at C=9 and 10. Despite getting equal 

decongestion time at C = 9 and 10, different fitness values 

were recorded. Then, it is sufficient to say that there are trade-

offs between decongestion time and fitness value in SA. 

Hence, the simulated annealing parameters – temperature, 

quenching factor and probabilities are responsible for these; 

probably confirming the result of Ola et al. [17].  

On the other hand, with GA, the lowest decongestion time 

was seen at Cycle 3, and equal time was seen at C = 1 and 4 

(Table II). The fitness values generated were also in the same 

range (0.2000 to 0.2357). The theory on convergence is 

proven that GA tends to converge faster than SA.  

Considering the relationship between the decongestion times 

and fitness values, there is no linear or inverse relationship as 

a result of the genetic algorithm method. The number of 

initial population and genetic operators and the pseudorandom 

numbers were responsible for these. The comparison and 

contrast between the variables in question were observed 

following the behaviour in terms of decongestion time and 

fitness values. In general, it was observed that the selection 

was random, and that when a lane was not fully decongested, 

another lane would not be picked. During the entire traffic 

decongestion cycle, values were recorded. However, the user 

needs to record the data at each cycle. Comparing the two 

cases, the fitness function statistics for the Case two (GA) was 

almost linear as against its counterpart (SA). The fitness 

values obtained were between 0 and 1 in all, which was 

between the selection probabilistic values set in the GA 

process. On the decongestion time, the values recorded 

showed that SA probably converges slower compared to 

Genetic Algorithm (Fig. 5).  Also, idle processor and starving 

of one lane or the other as all lanes were touched in the ten 

(10) cycles.  

A) Further Statistical Analysis  

In order to confirm the results, we subjected the results 

obtained from SA and GA to statistical analysis. The 

independent t-test was used because of the two approaches. 

After setting the error value to 0.05 (95%), the analysis 

showed that there was no statistical significant difference 

between their fitness values (p = 0.280 > 0.05) as well as their 

decongestion (p  =  0.658 > 0.05), even though there was 

mean difference between the two techniques.  

Therefore, even though there are mean differences between 

the two techniques, there is no statistical significant difference 

between their performances. 

V.    CONCLUSION 

In this study, Simulated Annealing (SA) and Genetic 

Algorithm (GA) models to solve the problem of road traffic 

congestion were simulated and compared. The simulations 

were implemented with MATLAB software. The traffic queue 

involved generation of pseudorandom numbers to substitute 

for the number of vehicles in the real-world scenario. The 

intersection consisted of a cross-road and an adjoining T-

junction. The performance evaluation of the two approaches 

(GA and SA) was done. Ordinarily, the simulation results 

showed that GA outperformed SA; hence, corroborating 

Mohammad [4], Jukka [18] and Tarek [19]. Statistically, 

however, there were no differences in their performances.  

Considering the need to improve the model, future research 

should apply animation. This will help add more 

understanding and attraction to the model. This could be in 

form of moving vehicles rather than the array of numbers as 

reflected in the current work. Also, there should be 

consideration of priority amongst motorist, such as 

Ambulance, Fire-fighting vehicle and Police van. The initial 

and stopping temperatures should be varied alongside cycle 

number for the Simulated Annealing program. For the 

Genetic Algorithm area, future researchers should consider 

the possibility of varying the initial population sizes, just like 

the cycle numbers. These would allow researchers to confirm 

their behaviour with respect to input size.  
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