
International Journal of Computer Science and Telecommunications [Volume 7, Issue 5, July 2016] 32

Journal Homepage: www.ijcst.org

AKINOLA Solomon Olalekan
1
 and ABDULHAMEED Idris A.

2

1,2
Department of Computer Science, University of Ibadan, Ibadan, Nigeria

Abstract– Road congestion is an optimization problem because

of the difficulty it poses and its high unpredictable nature.

Simulated Annealing (SA) and Genetic Algorithm (GA) have

been applied to optimization problems; however, trade-offs exist

as to which of the algorithms converges faster and the cost

attached. Searching the optimal solution to the problem domain

within a reasonable period is also a problem. This study is

focused on performance evaluation of GA and SA as applicable

to a crossroad and an adjoining T-junction Traffic congestion

problem. The algorithms were simulated and implemented with

MATLAB. The fitness values and traffic decongestion times for

10 cycles were measured. Statistical T-test was then used to

compare their performances. The result showed that there was

higher decongestion time in SA compared to GA with the peak

values of 51 and 48 seconds respectively. The statistical test

showed that, even though there were mean differences between

the two techniques, there were no statistical significant

differences between their performances.

Index Terms– Simulated Annealing, Genetic Algorithm and

Road Traffic Congestion

I. INTRODUCTION

N 1982, the method of Simulated Annealing (SA) was

introduced by Kirkpatrick et al., [1]. Initially, it was very

popular for Integrated Circuit (IC) chip design but now it

has a wide range of applications -timetable problem, graph

partitioning and transportation systems. Simulated Annealing

(SA) is one of the divisions of Artificial intelligence (AI) in

Computer Science. Generally, SA is a probabilistic method

for finding the global minimum of a cost function that may

have several local minima [2]. According to Jeff [3],

Simulated Annealing is defined as a programming method

which tries to simulate the procedure of annealing – a

physical process for cooling solids slowly. This occurs at a

minimum energy configuration.

One of the advantages of SA is that it converges to the

optimum solution of any optimization problem. It also works

as a hill-climbing search method that allows moves in less

good goal directions once in a while to escape local minima.

However, the algorithm is usually not faster than its

contemporaries [4]. Talking about the applications of SA,

Johnson et al. [5], [6], [7], as cited in Dimitris and John [2],

discuss the performance of SA on four problematic areas:

travelling salesman problem (TSP), graph partitioning

problem (GPP), graph colouring problem (GCP) as well as

number partitioning problem (NPP). The researchers (i.e.,

Johnson et al) apply SA to these NP-hard problems by means

of a cooling schedule in which the temperature decreases in a

geometric progression, namely, T(t+1) = rT(t).

On the other hand, Genetic Algorithm (GA) was invented

by Goldberg with the motivation from Darwin's theory of

evolution. Genetic algorithm was first developed in the mid-

1960s [8] and it is an area of Artificial Intelligence (AI). The

possible solutions to a problem are referred to as

chromosomes and a diverse set of chromosomes is grouped

into a gene pool. The worth of these solutions is determined

using a fitness function, and this quality is used to determine

whether or not the chromosomes will be used in producing the

next generation of chromosomes. The contents of high quality

solutions are more likely to continue into the next generation.

The next generation is generally formed via the processes of

crossover, combining elements of two chromosomes from the

gene pool, and mutation, by randomly altering elements of a

chromosome. In terms of application, Genetic algorithms are

widely used for finding good excellent solutions for a diverse

variety of difficult problems in science, engineering and

mathematics [9], [10] as cited in Steven and Brian, [11].

In other words, GA is an adaptive stochastic search

algorithm. Stochastic searches are those that make use of

probabilities to help achieve their searches. They are usually

referred to as function optimizers in the literature [12]. GA is

a family of models used in computation. These algorithms

encode a possible solution to a given problem on a simple

chromosome-like data structure and subsequently apply

recombination operators to these structures to preserve critical

information. The areas of application of the GA are – image

processing, pattern recognition, machine learning, road traffic

management and so on [13]. Furthermore, the possibility to

use genetic algorithms to solve real world problem has been

tested and evaluated by the researchers. Gustaf [14] applied

the concept to road traffic management. This researcher

considered the standard genetic algorithm. Genetic algorithms

are stochastic and the goal is to achieve best results. They

typically consume many resources in terms of CPU time and

memory size.

I

Comparative Analysis of Genetic and Simulated

Annealing Algorithms for Road Traffic Congestion

Management
 ISSN 2047-3338

AKINOLA Solomon Olalekan and ABDULHAMEED Idris A. 33

II. SYSTEM OVERVIEW

A) The Interface Development

The interface was developed with MATLAB. It consisted

of a GUI (Graphical user Interface) with a collection of tools

– pushbutton, check boxes; drop-down buttons, edit buttons,

axes and option boxes as shown in Fig. 1. The model

functioned after following these procedures. The user first

checked the type of algorithm to use (SA or GA), then the

number of cycle was entered in the box. Then, the user clicks

the calculate button to begin the program.

B) Design Constraints

One of the design constraints in the design is the signal

indicators. The signal indicators consisted of ‘red’ and ‘green’

lights. Red and Green light indicators were used for the

implementation because of the trade-off between signal and

lines of codes. The assumptions made during the system

design were:

a) That the lengths or widths of lanes were equal

b) That traffic decongestion was dependent on time

c) That the lanes were doubled

d) That the road users had equal priorities

e) The traffic queue involved generation of pseudorandom

numbers to substitute for the number of vehicles in the

real-world scenario. The intersection consisted of a

cross-road and an adjoining T-junction.

f) That there was no bulb or other device failure

g) That the system was interface driven

C) System Architecture

System Hardware Architecture

The traffic flows depicted in Fig. 1 were implemented on

Microsoft Windows 7 Professional (Version 6.1.7601 Service

Pack 1 Build 7601); System Model: HP 630 Notebook PC;

System Type: X86-based PC; processor: Intel(R) Pentium(R)

CPU B960 @ 2.20GHz, 2200 MHz, 2 Core(s), 2 Logical

Processor(s) and Main memory of 2048MB.

System Software Architecture

Standard Simulated Annealing Flowchart: The original SA

flowchart as presented by Luke [15] was modified to solve the

problem of traffic congestion in this study. It begins with the

initial solution to the problem given, which is also the Best

solution so far, and the temperature set at the initial

temperature Temp (i).This solution becomes the Current

solution and the Parent or active solution. The number of

Monte Carlo (ITRY) simulation attempts was set to 0.

ITRY is incremented by 1 and is tested to see if it has

reached the maximum number of attempts at this temperature.

If so, the current temperature is checked. If it is equal to the

final temperature, Temp (f), the simulation halts and both the

final and the Best solutions found during the simulation are

obtained. If the current temperature is above the final

temperature, it is reduced using a cooling schedule. The

number of Monte Carlo attempts (ITRY) is reset to 1.

Fig. 1: The Developed model’s Interface

International Journal of Computer Science and Telecommunications [Volume 7, Issue 5, July 2016] 34

Fig. 2: The Modified SA Flowchart

If the number of attempts at this temperature has not been

reached, or the temperature has been decreased, the Parent

solution is modified to generate a New solution. If the energy

of the New solution is lower than that of the Parent, it is

checked to see if it is the Best solution found to date. If it is, it

is stored separately. Whether or not it is the Best, it becomes

the new Parent solution for the next Monte Carlo step.

Whenever the Parent solution is updated, so is the Current

solution.

If the energy of the New solution is higher than the Parent's

by an amount dE, the Boltzmann probability (e
-dE/kT

 where k

is Boltzmann's constant and T is the current temperature) is

calculated. If this probability is greater than a random number

(Ran) between 0.0 and 1.0 this New solution is accepted and

becomes the Parent solution for the next iteration, and the

Current solution. On the other hand, if the Boltzmann

probability is less than Ran, the New solution is rejected and

the Current/Parent solution stays the same and is used in the

next iteration.

ALGORITHM 1: The Standard SA Algorithm (Mohammad,

2008)

1. s = Generate_Initial_Solution()

2. T = T_0

3. WHILE termination conditions not met

4. s1 = Pick_At_Random(N(s))

5. IF f(s1) < f(s)

6. s = s1

AKINOLA Solomon Olalekan and ABDULHAMEED Idris A. 35

7. ELSE

8. Accept s1 as new solution with probability

p(T,s1,s)

9. ENDIF

10. Update(T)

11. ENDWHILE

ALGORITHM 2: Modified SA Algorithm

1. Initialization: The number of cycles C = 0

2. Randomization: check for the busiest lane using

pseudorandom function;

3. Check for the busiest of the lanes;

4. Activate RED or GREEN signal as applicable to the

busiest lane

5. While C<=N do

6. Generate fitness value and decongestion time

(tDecong) for the active lane;

7. Repeat

8. Randomize new set of numbers;

9. For k = 0 to kmax do

10. Temperature = (

)

q

11. mu = 10^(Ti*100); kmax = 100; q=1;

fx1=feval (f,x1); df = fx1-fx;

12. until lower boundary is reached;

13. stop;

The Standard Genetic Algorithm: Kenneth [16] presented

the flow diagram of the standard Genetic Algorithm

procedure. The standard flow diagram was modified to solve

the problem of road traffic congestion. The modified

flowchart is depicted in Fig. 3 Genetic algorithm implements

the genetic algorithm at the command line to minimize an

objective function.

The genetic algorithm uses three main types of rules at each

step to create the next generation from the current population:

(i) Selection rules select the individuals, called parents,

which contribute to the population at the next

generation.

(ii) Crossover rules combine two parents to form

children for the next generation.

(iii) Mutation rules apply random changes to individual

parents to form children.

In this study, the following functions and variables were

used:

(i) Function chrms2 = crossover(chrms2, Nb):This

created crossover between two chromosomes

(ii) Stopping criteria: This was set at maxit=100;

(iii) Popsize: The set population size was 20

(iv) Mutate: Represented with 0.1

(v) The selection was set at 0.5

ALGORITHM 3: The Modified GA

1. Start

2. Generate initial population [1..20] in the current

population

3. Compute fitness for individuals 1..n in the current

population

4. Specify selection probability (sProb) = 0.5; mutation

rate (mrate) = 0.25, and crossover rate (cRate) = 0.75

5. While fit_value of chromosome >= sProb do

6. Perform crossover

7. Perform mutation

8. New chromosome (offspring)

9. Return result

10. Stop

Fig. 3: The modified GA Flow diagram

Generate initial population size [1..20]

Compute fitness for Individual 1..20 in

the current population

Save FitValues for Individual 1..N in the

current population

Specify selection probabiliy sProb = 0.5;

mRate = 0.25;

cRate = 0.75

While (FitValue of chromosome >=sProb) DO

Perform crossover

Perform mutation

New chromosome (offspring)

Return Result

International Journal of Computer Science and Telecommunications [Volume 7, Issue 5, July 2016] 36

III. RESULTS AND DISCUSSION

A) Results for Simulated Annealing

From Fig. 4, when a user selects the algorithm to use, for

instance, SA, the arrow shows the direction of movement of

vehicles generated randomly (i.e., North, South, East and

West). The simulation result reported the system time for

every instance (during same cycle). From the same Figure, the

number of cycle entered was 10. At the end of the cycle the

decongestion time was recorded alongside the fitness

function. The maximum number of routes or directions for

distribution of vehicles was five.

However, Table I shows that cycle four had the highest

decongestion time, while equal time occurred at cycles nine

and ten. From the second column of Table I, it was observed

that the minimum and maximum fitness functions occurred at

cycles seven and nine respectively. It was deduced that, cycle

four (4) took the highest decongestion time of 51s.

Fig. 4: Traffic simulation at C= 10 (Simulated Annealing)

Table I: Fitness Value vs. Time to Decongest in SA

B) Results for Genetic Algorithm

Just like in Fig. 4, the user selects the algorithm to use (GA)

from the interface. The arrows show the direction of

movement of vehicles generated randomly (i.e., North, South,

East and West). The simulation result recorded the system

time for every instance (during same cycle). From the same

figure, the number of cycle entered was 10. At the end of the

cycle the decongestion time was recorded alongside the

fitness function (Table II). The maximum number of

distributed routes was equally five as in the first case. It was

observed that there were closeness in values of decongestion

time at Cycles 1, 4, 8 and 10. There existed, equal fitness

values at Cycles 8 and 9 as shown in Table II. In addition, the

fitness values generated were all between the range – 0.2000

and 0.2357.

Table II: Fitness Value vs. Time to Decongest in GA

Cycle

Decongestion

Time td (s) Fitness function

1 48.0 0.2335

2 18.0 0.2337

3 11.0 0.2336

4 48.0 0.2341

5 18.0 0.2401

6 27.0 0.2341

7 14.0 0.2357

8 47.0 0.2340

9 35.0 0.2340

10 47.0 0.2349

Cycle

Decongestion Time td

(s) Fitness function

1 11.0 0.04103

2 9.0 0.02167

3 30.0 0.34140

4 51.0 0.08911

5 15.0 0.23800

6 50.0 0.47010

7 40.0 0.00002

8 11.0 0.16500

9 6.0 0.78180

10 6.0 0.57760

AKINOLA Solomon Olalekan and ABDULHAMEED Idris A. 37

Fig. 5: Decongestion times in GA and SA for the Cycles

Fig. 6: Fitness values in SA and GA for the Cycles

With reference to Fig. 5, the period of decongestion under

simulated annealing was higher as against the genetic

algorithm considering their peak values of 51 for SA and 48

for GA. This probably confirms Mohammad (2008) and other

researchers that support the declaration that SAs are usually

slower than their contemporaries.

With reference to Fig. 6, it is observed that GA curve is

almost linear, while that of SA is sinusoidal, which also

probably shows that the convergence of SA is slower to GA;

hence, corroborating Mohammad [4] as highlighted in the

literature.

IV. DISCUSSION OF RESULTS

The Comparison of the optimization methods GA and SA

to enhance Road Traffic Management is presented here. The

control parameter values for all the optimization algorithms

are given thus:

i. GA: Population size = 50, generations = 100,

crossover probability = 0.05, mutation probability =

0.5.

ii. SA: Generations = 300, initial cooling temperature =

100 and cooling constant = 1, lower bound = -5 and

upper bound = 5.

0

10

20

30

40

50

60

0 2 4 6 8 10 12

D
e

co
n

g.
 T

im
e

 (
s)

Cycle

td(SA)

td(GA)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

Fi
tn

e
ss

 v
al

u
e

Cycle

fit(SA)

fit(GA)

International Journal of Computer Science and Telecommunications [Volume 7, Issue 5, July 2016] 38

From the simulation results, it was shown that simulated

annealing does not outperform genetic algorithm (Fig. 5 and

Fig. 6). Considering Table 1, when C = 1, the decongestion

time for SA is higher geometrically in comparison to GA.

Meanwhile at the second cycle (i.e., C = 2), it was observed

that the value generated for decongestion time declined

sharply (by one third) and the highest time is seen at C = 4.

By checking the fitness value at C =1 and 2, it was observed

that there is an inverse proportion between the decongestion

time and fitness function and irregular in some. Likewise, the

value of the fitness functions generated were almost

negligible (i.e., <<<0) in the simulated annealing result. Equal

decongestion time was at C=9 and 10. Despite getting equal

decongestion time at C = 9 and 10, different fitness values

were recorded. Then, it is sufficient to say that there are trade-

offs between decongestion time and fitness value in SA.

Hence, the simulated annealing parameters – temperature,

quenching factor and probabilities are responsible for these;

probably confirming the result of Ola et al. [17].

On the other hand, with GA, the lowest decongestion time

was seen at Cycle 3, and equal time was seen at C = 1 and 4

(Table II). The fitness values generated were also in the same

range (0.2000 to 0.2357). The theory on convergence is

proven that GA tends to converge faster than SA.

Considering the relationship between the decongestion times

and fitness values, there is no linear or inverse relationship as

a result of the genetic algorithm method. The number of

initial population and genetic operators and the pseudorandom

numbers were responsible for these. The comparison and

contrast between the variables in question were observed

following the behaviour in terms of decongestion time and

fitness values. In general, it was observed that the selection

was random, and that when a lane was not fully decongested,

another lane would not be picked. During the entire traffic

decongestion cycle, values were recorded. However, the user

needs to record the data at each cycle. Comparing the two

cases, the fitness function statistics for the Case two (GA) was

almost linear as against its counterpart (SA). The fitness

values obtained were between 0 and 1 in all, which was

between the selection probabilistic values set in the GA

process. On the decongestion time, the values recorded

showed that SA probably converges slower compared to

Genetic Algorithm (Fig. 5). Also, idle processor and starving

of one lane or the other as all lanes were touched in the ten

(10) cycles.

A) Further Statistical Analysis

In order to confirm the results, we subjected the results

obtained from SA and GA to statistical analysis. The

independent t-test was used because of the two approaches.

After setting the error value to 0.05 (95%), the analysis

showed that there was no statistical significant difference

between their fitness values (p = 0.280 > 0.05) as well as their

decongestion (p = 0.658 > 0.05), even though there was

mean difference between the two techniques.

Therefore, even though there are mean differences between

the two techniques, there is no statistical significant difference

between their performances.

V. CONCLUSION

In this study, Simulated Annealing (SA) and Genetic

Algorithm (GA) models to solve the problem of road traffic

congestion were simulated and compared. The simulations

were implemented with MATLAB software. The traffic queue

involved generation of pseudorandom numbers to substitute

for the number of vehicles in the real-world scenario. The

intersection consisted of a cross-road and an adjoining T-

junction. The performance evaluation of the two approaches

(GA and SA) was done. Ordinarily, the simulation results

showed that GA outperformed SA; hence, corroborating

Mohammad [4], Jukka [18] and Tarek [19]. Statistically,

however, there were no differences in their performances.

Considering the need to improve the model, future research

should apply animation. This will help add more

understanding and attraction to the model. This could be in

form of moving vehicles rather than the array of numbers as

reflected in the current work. Also, there should be

consideration of priority amongst motorist, such as

Ambulance, Fire-fighting vehicle and Police van. The initial

and stopping temperatures should be varied alongside cycle

number for the Simulated Annealing program. For the

Genetic Algorithm area, future researchers should consider

the possibility of varying the initial population sizes, just like

the cycle numbers. These would allow researchers to confirm

their behaviour with respect to input size.

REFERENCES

[1] Kirkpatrick S., Gelatti C.D. and Vecchi P. (1983).

Optimisation by Simulated Annealing, Science Journal, Series

220 Volume 4598 (May 13, 1983), pp. 671-680

[2] Dimitris Bertsimas and John Tsitsiklis (1993). Simulated

Annealing, Journal of Statistical Science, Vol. 8 No. 1, pp. 10-

15, Massachusetts

[3] Jeff Heaton (2008). Introduction to Neural Networks with

Java, Heaton Research, Inc. (2nd ed.), United States of

America, ISBN 1604390085, pp.199-207

[4] Mohammad Tehranipoor H. (2008). Simulated Annealing

(SA) and CAD Algorithms, ECE Department, University of

Connecticut, United States, Journal paper on International

Conference on Computer Aided design (ICCAD).

[5] Johnson D., Aragon C., McGeoch L., and Schevon C. (1990).

Optimisation by Simulated Annealing: An experimental

evaluation, Part I: Graph partitioning. Operations Research 37,

pp.865-892.

[6] Johnson, D. Aragon, C., McGeoch, L. and Schevon, C. (1991).

Optimisation by Simulated Annealing: An experimental

evaluation, Part II: Graph Colouring and Number Partitioning.

Operations Research 39 878-406.

[7] Johnson, D. Aragon, C., McGeoch, L. and Schevon, C. (1992).

Optimisation by Simulated Annealing: An experimental

evaluation, Part III: The Travelling Salesman Problem.

Unpublished manuscript.

[8] Sitharama S. Iyengar and Richard R. Brooks (2012).

Distributed Sensor Networks, Second Edition: Image and

Sensor Signal Processing, Computer and Information Science

Series, Chapman and Hall/CRC Pres, Second Edition, ISBN

9781439862872, pp. 1-942

[9] Goldberg D. E. (1989). Genetic Algorithms in search,

Optimization and Machine Learning, Addison-Wesley

Publishing company, Inc., pp.1-145

AKINOLA Solomon Olalekan and ABDULHAMEED Idris A. 39

[10] Holland J.H. (1992). Adaptation in Natural and Artificial

Systems, MIT Press., Adaptation in Natural and Artificial

Systems, Complex Adaptive Systems Series, Bradford Book

Publishers, ISBN 0262581116, pp. 1-211.

[11] Steven Bergen and Brian J. Rose (2011). Automatic and

Interactive Evolution of Vector Graphics Images with Genetic

Algorithms. Technical Report to Department of Computer

Science, Brock University, Canada, .pp. 2-14.

[12] Mühlenbein H. (1991). Evolution in Time and Space - The

Parallel Genetic Algorithm, In Foundations of Genetic

Algorithms, Morgan Kaufmann publishers, United States,

pp.3-20.

[13] Whitley Darrell (1994). A Genetic Algorithms Tutorial, The

GENITOR Research Group Publication on Statistics and

Computing, Colorado State University, Fort Collins, Vol. 4,

pp.65-85.

[14] Gustaf Jansson (2010). Traffic Control With Standard Genetic

Algorithm: A Simulated Optimisation Control of a Traffic

Intersection, Master Of Science Thesis/Thesis Work, In

Intelligent Systems Design, Department of Applied

Information Technology, Chalmers University of Technology,

Gothenburg, Sweden, 2010, ISSN: 1651-4769, pp. 1-70

[15] Luke Brian .T. (2002). Simulated Annealing Flow Chart,

Luke, B.T. & Associates Inc. Accessed from

http://www.btluke.com/simanf2.html, December 29, 2015, pp.

1.

[16] Kenneth A. De Jong (1992). Are Genetic Algorithms Function

Optimisers? Proceedings of the Second Conference on

Parallel Problems Solving from Nature, Elsevier Publishers

Ltd., Vol. 20, pp. 1-3.

[17] Ola B. O., Omidiora E. O., Ganiyu R. A. (2014). Modeling

and Controlling Isolated Intersections using Simulated

Annealing Approach, International Journal of Applied

 Information Systems (IJAIS) – Volume 7– No.6, ISSN :

2249-0868, pp. 13-15 .

[18] Jukka Kohonen (1999). A Brief Comparison of Simulated

Annealing and Genetic Algorithm Approaches, Term paper for

the "Three Concepts: Utility" course, Department of

 Computer Science, University of Helsinki, pp.1-3.

[19] Tarek (2007). A Genetic and Simulated Annealing Based

Algorithms for Solving the Flow Assignment Problem in

Computer Networks, World Academy of Science, Engineering

and Technology Journal, Vol. 1, No 3, pp. 360-366.

http://www.btluke.com/simanf2.html,%20December%202921

