
International Journal of Computer Science and Telecommunications [Volume 6, Issue 7, July 2015] 14

Journal Homepage: www.ijcst.org

Sunil D. Bobade
1
 and Vijay R. Mankar

2

1
S.G.B. Amravati University, India

2
MSBTE, Pune, India

Abstract– The constrained operating environments of many

FPGA based embedded systems require flexible security that can

be configured to minimize the impact on FPGA area and power

consumption. To ensure the overall security of embedded

systems with off-chip memories, it is essential to safeguard the

confidentiality and integrity of the data that travels between the

system-on-chip part of the embedded system and the off-chip

memory. This paper proposes a complete hardware solution for

embedded systems that fully protects off-chip memory. The

confidentiality and integrity is achieved by using a modified

Elliptic Curve Cryptographic (ECC) approach. Initially, with

respect to the instruction from the processor, the security level

for the address is identified and based on the security level the

encryption process follows, thereby storing the data in the form

of cipher text in the external memory location. During read

operation, based on the address, the segment id is verified and

then the decrypted data is allowed to the processor after

appropriate verification. These modules safeguard external

memories for embedded processors against a series of well-

known attacks, including replay attacks, spoofing attacks and

relocation attacks. The complete module is realized using Xilinx

ISE 14.1 software using verilog coding with a target device as

virtex-4 xc4vlx200-11-ff1513. The functional verification of the

design is done by simulating the design.

Index Terms– Elliptic Curve Cryptographic, Embedded

System, VLSI, Xilinx, Confidentiality and Integrity

I. INTRODUCTION

YSTEM security is an increasingly important design

criterion for many embedded systems. These systems are

often portable and more easily attacked than traditional

desktop and server computing systems. FPGAs are quickly

becoming ubiquitous components in many low-cost

embedded systems. These systems often contain little more

than an FPGA, external memory, I/O ports and interfaces to

sensors and monitors [1]. In addition to standard concerns

regarding system performance and power consumption,

security has become a leading issue for many embedded

applications [2]. Although the programmed contents of

FPGAs are frequently protected with bitstream encryption,

external memory transfers can easily be observed and may

reveal important application information. Some memory

protection can be provided by simply encrypting data prior to

external memory transfer. The confidentiality and integrity of

sensitive information is a critical component of any secure

system [3]. Typically, this protection is implemented at least

in part through the use of symmetric algorithms, like DES,

AES, or countless others.

The external memory of an embedded system can face a

variety of attacks Well-known attacks include spoofing,

relocation, and replay attacks [4]. A spoofing attack (Figure 1)

occurs when an attacker provides a random data value on the

bus, causing the system to malfunction. A relocation or

splicing attack (Figure 2) occurs when an instruction put on

the bus by an attacker is copied from a different bus address.

If the whole memory is encrypted with the same key, the

swapped instruction will be executed instead of the original

instruction. For example, a swapped instruction could make

the program jump to malicious code stored in a non-ciphered

part of memory. The last type of attack a system might face is

a replay attack (Figure 3). This attack is similar to a relocation

attack but an attacker provides a data value that was

previously located at an address before it was overwritten.

In this paper, a new FPGA-based approach is proposed

which provides confidentiality and integrity to off-chip data

accesses made by a processor on the FPGA chip. A hardware-

based security core determines the appropriate data security

level as memory accesses occur in conjunction with an

embedded real-time operating system. Proposed approach

targets replay, relocation, and spoofing attacks.

Confidentiality in proposed system utilizes the ECC crypto

processor [5] designed using area efficient Double point

multiplication algorithm [6] designed in our preliminary

work. In proposed implementation, a time stamp value (TS),

data, data and address of the write data are used as input to an

ECC encryption circuit to generate the cipher text, which in

turn is stored in the external memory. Rather than encrypting

write data directly, as in conventional techniques[7]-[8], our

approach generates an encrypted data by subjecting a specific

format of data, memory address and the TS value to the ECC

module during each write operation. The Time stamp value

considered here is the private key to the ECC module. The use

of time stamps and data addresses in our approach protects

read/write data against replay and relocation attacks [9].

S

Developing Configurable Security Algorithms for

Embedded System Storage

ISSN 2047-3338

Sunil D. Bobade and Vijay R. Mankar 15

Figure 1: Spoofing attack

Figure 2: Relocation attack

Processor

0XAD779065

0XFFAD9024

0X0FAE87C4

0X00000045

0XDE7456AB

0

1

2

3

4

External Memory

Read 1

0XFFAD1232

0XAD779065

Processor

0XAD779065

0XFFAD9024

0X0FAE87C4

0X00000045

0XDE7456AB

0

1

2

3

4

External Memory

Read 1

0X00000045

1

3

International Journal of Computer Science and Telecommunications [Volume 6, Issue 7, July 2015] 16

Figure 3: Replay attack

If a data value is replayed, the TS used for ciphering will

differ from the one used for deciphering. If a data value is

relocated, its address will differ from the one used to generate

the cipher text. In both cases, the deciphered data will be

invalid. Our FPGA-based security core provides both

confidentiality and integrity for data stored externally to an

FPGA which is accessed by a processor on the FPGA chip.

The complete system is synthesized and simulated using

Xilinx ISE. Power report, Device utilization summary and

performance of our system is designed and compared with the

similar works reported recently.

The rest of the paper is structured as follows: Related work

is described in Section II. Research methods and motivation

for our work is described in Section III. Details of our

proposed hardware security core are explained in Section IV.

A description and analysis of experimental results are

provided in Section V. Section VI concludes the paper.

II. RELATED WORKS

In [10], Satyajeet Nimgaonkar et al. presented a novel

energy efficient Memory Integrity Verification scheme for

embedded systems with the focus on achieving energy

efficiency in cryptographic Memory Integrity Verification

(MIV) mechanism. The work contributed with a novel energy

efficient approach called Timestamps Verification (TSV) to

provide Memory Integrity Verification in embedded systems.

The research also elaborated the new technique along with its

theoretical evaluation, simulation results, and experimental

evaluation. The results proved that the energy savings in the

TSV approach are in the range of 36–81% when compared

with traditional MIV mechanisms.

Jeremie Crenne et al. in [11] presented a new approach to

embedded system security focusing on the protection of

application loading and secure application execution. During

secure application loading, an encrypted application was

transferred from on-board flash memory to external double

Processor

0XAD526524

0XFFAD8562

0X0FAE54A4

0X00465217

0XDE5482AB

0

1

2

3

4

External Memory TS=12

Read 1

1

0XAD779065

0XFFAD9024

0X0FAE87C4

0X00000045

0XDE7456AB

0

1

2

3

4

External Memory TS=121

0XAD779065

Sunil D. Bobade and Vijay R. Mankar 17

data rate synchronous dynamic random access memory

(DDR-SDRAM) via a microprocessor. Following application

loading, the core-based security technique provides both

confidentiality and authentication for data stored in a

microprocessor’s system memory. The benefits of the low

overhead memory protection approaches were demonstrated

using four applications implemented in a field-programmable

gate array (FPGA) in an embedded system prototyping

platform. Each application required a collection of tasks with

varying memory security requirements. The configurable

security core implemented on-chip inside the FPGA with the

microprocessor allowed for different memory security

policies for different application tasks. An average memory

saving of 63% was achieved for the four applications versus a

uniform security approach. The lightweight circuitry included

to support application loading from flash memory adds about

10% FPGA area overhead to the processor-based system and

main memory security hardware.

Ma Haifeng et al. in [12] introduced an efficient scheme to

protect data confidentiality and integrity. Based on the local

characteristic of data accessing, the scheme set different

counter length for memory area according to different

accessing frequencies and the counter length can be

dynamically adjusted. The analysis and the simulation results

indicated that compared with the counter mode encryption,

the scheme can decrease memory space overhead and the

number of overflow. The proposed scheme can be applied to

other schemes of protecting confidentiality and integrity

based on counters and can satisfy performance requirements

for most applications.

A novel energy efficient approach for MEMory integrity

Detection and Protection (MEM-DnP) was presented by

Satyajeet Nimgaonkar et al. in [13]. The key feature of MEM-

DnP was that it can be adaptively tune a memory integrity

verification module by using a sensor module. This

significantly reduced the energy overheads imposed on an

embedded system as compared to the conventional memory

integrity verification mechanisms. The simulation results

showed that the average energy saved in the combined

detection and protection mechanism ranges from 85.5% to

99.998%. This was substantially higher compared to the

results achieved in base case simulations with traditional

memory integrity verification techniques.

 In [14], Bao Liu and Brandon Wang presented a

reconfigurable reversible computing-based cryptography, and

a generic reconfiguration-based VLSI design-for-security

methodology. In the case studies based on a SPARC V8

LEON2 processor, the new technique prevented software- or

hardware-based code injection attacks at cost of 0.72% area

increase, negligible power consumption increase and no

performance degradation; it also further prevented a hardware

Trojan from gaining unauthorized memory access at cost of

4.42% area increase, negligible power consumption increase,

and 11.30% critical path delay increase. Apostolos P.

Fournaris and Nicolas Sklavos [15] provided an overview

from ES hardware perspective of methods and mechanisms

for providing strong security and trust. The various categories

of physical attacks on security related embedded systems

were presented along with countermeasures to thwart them

and the importance of reconfigurable logic flexibility,

adaptability and scalability along with trust protection

mechanisms is highlighted. Those mechanisms were adopted

in order to propose a FPGA based embedded system hardware

architecture capable of providing security and trust along with

physical attack protection using trust zone separation. The

benefits of such approach were discussed and a subsystem of

the proposed architecture is implemented in FPGA

technology as a proof of concept case study. In [16] Zhenglin

Liu et al. provided an approach for both data confidentiality

and integrity authentication and enable a good tradeoff

between on-chip memory cost, performance overhead and

security. The proposed double-layer protection mechanism

works effectively on the occasions where on-chip memory

overhead was sensitive and the speed requirement is not so

high. Comparing with tree based approaches, such as AEGIS,

their approach has a great advantage in terms of performance

cost, but the on-chip memory overhead is relatively larger

than that of tree based approaches.

III. RESEARCH METHODOLOGY

There are two ways to include security primitives to the

device. The first one is to try to add software protections. But

due to the restricted capabilities of embedded systems,

software approach is not recommended due to the processing

overhead. The second solution is a more practical. The idea is

to add some hardware primitives which are running on the fly

and checking the system integrity. Energy is a critical point as

soon as embedded systems are targeted especially when they

are autonomous. Hardware architectures provide the most

interesting solutions from an energy efficient point of view.

For example, a hash algorithm consumes 80 times more

energy in software than a hardware implementation. Here the

goal is to provide an efficient hardware solution, fully

transparent for the user (no system stall) and also for the

software designer who builds application for the device. The

hardware primitives must take care of the security primitive to

guarantee the data confidentiality and the system integrity to

prevent any unauthorized software modification. The

challenge is to offer area efficient security solution.

IV. PROPOSED METHOD

The proposed security technique for memory security by

utilizing a Hardware security core, which is realized using

FPGA logic along with an embedded memory, is depicted in

figure. The proposed hardware security core is designed with

an intention in order to switch among different security levels,

based on the data address expelled by the processor. The

security level switching can be achieved by adapting a look

up table containing the address with their corresponding

security level. In this work we have considered three main

security levels they are Confidentiality and integrity,

Confidentiality only and no security. The security level

classification is done completely based on the user interest

International Journal of Computer Science and Telecommunications [Volume 6, Issue 7, July 2015] 18

and is independent of the operation system or the processor.

All the parameter values assigned in the security core are

present in the encrypted data and can be accessed in future. If

the security level has to be configured, then a fresh memory

security protocol has to be designed.

In our proposed implementation the hardware security core

links the gap between the processor’s cache memory and the

external memory’s cache memory. All the data transmission

between the processor and external memory takes place via,

the proposed hardware security core architecture for ensuring

the data security. The top module, the hardware security core

includes sub modules Encapsulation and De-encapsulation

unit for formatting the data, address and the segment id into

plain text, a Time stamp generator for generating a count

value at that instance and used here as a key for ECC

cryptoprocessor, a segment id generator for generating a

security level based tag for identifying the security level

needed for the data, an internal memory is used here for

storing the segment id, TS value along with the corresponding

address value and the ECC engine for encrypting the

encapsulated plain text into cipher text and to decrypt the

stored data in the external memory to the original plain text.

In the Figure 4, when a write instruction is activated, the

write line value becomes 1, thereby enabling the segment id

generator. The segment id generator, based on the security

level for the input address controls other sub modules.

Figure 4: Proposed Hardware security core block schematic

Figure 4. Architecture of Proposed security Core

Processor

C
a

ch
e

M
em

o
ry

TS generator

Segment ID

generator

ECC Engine

Encap/De-Encap

Cipher Text

Internal

Memory

External

Memory

=?

=?

Data

Address

Data

Write/Read

Write=1

Write=1

TS (Key)

Plain text

Plain text

C
a

ch
e

M
em

o
ry

Proposed Hardware Security

Core
Data flow during

write request

Data flow during

Read request

Read=1

Control Logic

Sunil D. Bobade and Vijay R. Mankar 19

If the security level for the corresponding address is high then

the time scale value at that instant is fed as the private key to

the ECC engine and the data, address and the corresponding

TS value are subjected to the encapsulation process. The

encapsulated data is then fed as a plain text M to the ECC

engine for encryption. The address, segment id, TS value are

all stored in the internal memory for the integrity checking. If

the security level for the address location, where the data has

to be written is low, then no security has to be provided for

the data corresponding to that address and hence the data can

be directly stored in the external memory. The algorithmic

representation when the write signal is activated by the

processor is shown in Algorithm 1.

Whenever the read instruction is activated by the processor,

based on the address location the cipher text stored in the

external memory is retrieved and in the meanwhile the

security level for that address is identified from the internal

memory and by using the TS value (d) stored corresponding

to the given address, the cipher text is decrypted to a plain

text M. The plain text M is then de-encapsulated to the

original format and then the address; TS are compared with

the stored values for identifying attacks. If the values match,

then the de-encapsulated data is allowed to pass to the

processor. Algorithm 2, gives a clear idea about the proposed

concept for memory data security when the read signal is

activated by the processor.

)0(

},{

;;;

};;{

1

21

1

:

,,:

1:Algorithm

return

end

ifend

DatamemoryExternal

else

textCiphermemoryExternal

TStextPlainECCtextCipher

TSidSegDataAddressmemoryInternal

TSDataAddressEncaptextPlain

TSgeneratorTS

then

oridseg

if

write

while

textCipherOutput

writeAddressDataInput

International Journal of Computer Science and Telecommunications [Volume 6, Issue 7, July 2015] 20

)0(

0

0

};;{)(

},{

)(2

1

1

},{},{:

};;{)(

},{

)(1

1

,,:

:

2:Algorithm

return

end

ifend

Attack

memoryCacheData

else

Attack

memoryCacheData

TSDataAddresstextPlainEncapDe

TSCipherECCtextPlain

memoryExternaltextCipher

then

memoryinternalinidseg

ifelse

ifend

Attack

else

memoryCacheData

then

match

if

TSAddressTSAddressmemoryInternalcheckingIntegrity

TSDataAddresstextPlainEncapDe

TSCipherECCtextPlain

memoryExternaltextCipher

then

memoryinternalinidseg

if

Read

while

TSAddressDataOutput

textCipherInput

Sunil D. Bobade and Vijay R. Mankar 21

A) Encapsulation/De-Encapsulation

The initial step in our technique for memory security is the

wrapping of the address, data and segment id into a single

data with a specific format as a plain text for the ECC engine.

Then the data, address and the segment id from the cipher text

stored in the external memory are unwrapped and separated as

the original. This process is handled by a module Encap/ De-

encap shown in the Figure 5. The process of encapsulation

and de-encapsulation used in our case is depicted in Figure 5.

For example if a data of length 64-bit and the length of the

address, TS is 16-bits, 8-bit respectively, then the length of

the encapsulated data is with a length of 88 bits, with a format

as shown in Figure 5.

B) Time stamp generator

To prevent replay attacks, a simple time stamp generator,

such as a counter, is used. As shown in Algorithm 1, the TS

value associated with each data address is incremented by 1

after each write to the memory. For each new processor write

request, the system will generate a different key since the

value of TS is incremented. During a read, the original TS

value stored in the internal memory is used for comparative

purposes. The retrieved TS value is provided to ECC during

the read request. The ECC result will give the same key as the

one produced for the write request and the encrypted data will

become plaintext.

Read-only data, such as processor instructions, do not

require protection from replay attacks because these data are

never modified. No TS values are needed for these data so the

amount of on-chip TS memory space can be reduced

accordingly. Read-only data may be the target of relocation

attacks but the address used to compute the ECC guarantees

protection against these attacks. The use of time stamps and

data addresses for ECC protects read/write data against replay

and relocation attacks. If a data value is replayed, the TS used

for ciphering will differ from the one used for deciphering. If

a data value is relocated, its address will differ from the one

used to generate the key. In both cases, the deciphered data

will be invalid.

C) Segment id generator

The segment id generator is a simple LUT based

architecture used for identifying the security level for a

particular address location. When the write instruction is

activated, the initial process that takes place is the segment id

generation process. The memory is segmented and security

level for each address location and their corresponding

security level are stored in the LUT as shown in figure. When

the write signal is activated by the processor, the LUT is

searched for the security level related to that address and with

respect to that address the remaining modules are enabled.

The three levels of security and their corresponding Segment

id are tabulated in table. Same segment ID is used for all

address belonging to a particular application segment.

Figure 5: Encapsulation/ De-encapsulation module

Figure 6: Time stamp generator

TS=TS+1

Write=1

Enable

TS

Nd: 0

Na: 0

Nd: 0 Na: 0

Encapsulation

De-Encapsulation

NTS: 0

NTS:

0

International Journal of Computer Science and Telecommunications [Volume 6, Issue 7, July 2015] 22

Table 1: Security level and their corresponding segment id

Security Level Segment Id

No security 00

Confidentiality only 10

Confidentiality and Integrity 11

Figure 7: LUT based segment id generator

If the security level for the input address belongs to the

segment which needs no security then the LUT output will be

‘00’, thereby disabling the encap/De-Encap, TS generator and

the ECC engine. If the address represents a segment for which

there should be a need for confidential checking, then the

segment id generated by the generator will be ‘10’. This

segment id enables all the sub modules, leaving only the

storing of data in the internal memory, since the data

corresponding to the given address does not need an integrity

checking. In the case of the segment that needs confidentiality

and integrity, the segment id is ‘11’ and this enables the ECC

engine, encap/De-Encap and the TS generator.

D) ECC Engine

The ECC engine here provides security storage by

encrypting and decrypting the data. The modified form of the

ECC crypto processor using double point multiplication is

adapted in our work. The working process of the ECC engine

can be discussed below. Initially, the public key is generated

whenever write signal goes high and let us consider the

computed public key as Kpu. Since the generation of the public

key does not depend only on the write signal of the processor

output, this is similar as that for the conventional method. The

public key generation is followed by an encryption process.

Encryption

For the encryption process, the plain text M, expelled from

the encapsulation module is fed to the ECC engine along with

the TS value. The TS generator designed should be of a LFSR

type, since the private key to the ECC is a random number

ranging from a value 1 to n-1, where n is the used defined bit

length. Two random points P1 and P2 that lies in the

considered elliptic curve equation and two other random

numbers r1 and r2 are also defined from the range 1 to n-1. By

using the double point multiplication, r1 P1 and r2 P2 are

computed. The cipher text composed of two parts. The first

part C1 is obtained by performing point addition between the

two points P1 and P2 and then performing finite field

multiplication between the added point and the TS value at

that instant. The second part of the cipher text is obtained by

adding the plain text M , with the point which is obtained as a

rest of point addition between the two points r1 P1 and r2 P2,

that are generated in the initial public key generation stage

and multiplying it with the obtained TS value. Both the cipher

text C1 and C2 are merged and then stored in the external

memory. The modified encryption algorithm is shown in

Algorithm 3.

Address from (a1 to an) : Level 1

Address from (b1 to bn) : Level 2

Look Up Table

Address from (c1 to cn) : Level 1

Address d1 : Level 3

Address from (z1 to zn) : Level 3

Write=1

Address

Security Level

Sunil D. Bobade and Vijay R. Mankar 23

),(.5

.4

)(.3

)(.2

.1

,:

)}1(1{,,,,:

3:Algorithm

21

2

2211

211

21

221121

CCreturn

tempMC

PrPrTStemp

PPTSC

TSLoad

ECCOutput

nTSandEPrPrMPPInput

Decryption

During the decryption process of the ECC engine, the merged cipher texts C1 and C2 and the private key TS stored in the

internal memory for the corresponding read address executed by the processor are used to decrypt the original plaintext from the

encrypted cipher texts stored in the external memory. The decryption process of our ECC engine can be better understood from

the algorithm given below.

Mreturn

CrrTSCM

MOutput

nrrandECCInput

.3

)}({.2

:

)}1(1{,,:

4:Algorithm

1212

2121

The plain text thus obtained is then de-encapsulated and then based on the segment id, the integrity checking takes place. (See

algorithm 2).

Figure 8: ECC Engine

M TS

C1

C2

P1

P2

r1P2

r2P2

FSM Temporary

storage

Finite Field

Arithmetic

International Journal of Computer Science and Telecommunications [Volume 6, Issue 7, July 2015] 24

The ECC engine shown in Figure 8 operates based on the

encryption and decryption process discussed in algorithms.

The FSM controls the working of the complete ECC module.

The finite field arithmetic incorporates the point addition,

dual point multiplication, squarer and the finite field inverter.

The operation of the ECC engine is similar as given in

algorithms 3 and 4.

V. RESULT AND DISCUSSION

In order to validate the benefits of proposed approach,

hardware security core is implemented along with a DWT

(Discrete Wavelet Transform) processor and associated

memory. The complete architecture discussed in the proposed

method is synthesized using Xilinx ISE 14.1 Virtex-4

xc4vlx200-11-ff1513 as a target FPGA device. The RTL

schematic and the simulation of proposed architecture is

given in Figure 9 and Figure 10 respectively.

Figure 9: RTL schematic of proposed hardware security core

Figure 10: Simulation of proposed hardware security core

Sunil D. Bobade and Vijay R. Mankar 25

Table 2: Comparison of DWT and proposed hardware security core incorporated DWT modules

Parameters Only DWT
DWT+Proposed Hardware

security core
Overhead %

Target Device

xc4vlx200-11-ff1513

xc4vlx200-11-ff1513

-

Slices

33

163

-79%

4 input LUTs

58

250

-76%

DSP48s

3 3

0%

GCLKs

1 1

0%

Delay

4.615ns

4.630ns

-0.3 %(~0%)

memory usage

292364 Kb

391064 Kb

-25%

Maximum Frequency

- 432.302MHz

-

Table 3: Power comparison for DWT and proposed hardware security core incorporated DWT modules

Frequency(MHz)

Only DWT DWT+Proposed Hardware security core

Dynamic

(mW)

Static

(mW)

Total

(mW)

Dynamic

(mW)

Static

(mW)

Total

(mW)

100 9 1344 1353 37 1344 1384

200 16 1345 1361 41 1347 1389

300 20 1345 1365 46 1348 1393

400 23 1346 1369 50 1348 1398

Comparing with the DWT architecture without security

core, which is implemented in the same target device, our

architecture with security core has an area overhead of 79% in

terms of slices and 76% in terms of LUTs. This overhead is

due to the additional hardware resources needed for providing

security to the processor architecture. Both the architectures

include only 3 DSP48s and 1 global clock. The delay time

exhibited by our proposed architecture is 0.3% is greater than

that of the conventional DWT architecture without the

security module. Since the overhead reported here is a

negligible value the delay overhead will not be considered and

hence our security core incorporated DWT processor will

process the data with the same delay time as that is reported

by the conventional DWT processor. The memory usage of

the proposed module also has a memory overhead of about

25%, which is because of the additional internal memory we

have adapted for storing the address, segment id and the TS

value. The hardware security core also reported an overall

frequency rate of 432.302MHz.

The bar chart shown in Figure 11 depicts the difference in

power consumption reported by normal DWT and DWT

processor architecture with the proposed hardware security

core. Comparing the power consumption, the static power

remains the same, whereas the dynamic power differs a

negligible amount thereby contributing the slight increase in

the overall power consumption by the complete module. The

area and latency reported by various levels of security is

tabulated in Table 3 below.

International Journal of Computer Science and Telecommunications [Volume 6, Issue 7, July 2015] 26

Figure 11: Power comparison with respect to frequency

Table 3: Area and Latency reported by various levels of security

VI. CONCLUSION

In this paper, a configurable architecture for hardware

security core offering security services to off chip memory in

embedded system has been proposed. Core can be configured

to offer three different levels of security to data. Security core

houses confidentiality and Integrity engine based on area

efficient ECC algorithm. The proposed ECC based solution

for memory security shows no latency delay even after

invoking different and stringent security levels. The

experiment was conduction by connecting the designed

security core with a re-designed DWT processor for

evaluating the area, power and performance of the

implemented design. Experimental results shows that the

proposed design even though have slight overhead in terms of

area, the latency reported for the design and power

consumption is almost stable for three levels of security. This

security core is not adversely affecting the processing speed

and not contributing to power consumption.

REFERENCES

[1]. Trimberger, S.M and Moore, J.J, “FPGA Security:

Motivations, Features, and Applications”, Proceedings of the

IEEE, Vol.2, No. 8, August 2014.

[2]. Apostolos P. Fournaris and Nicolas Sklavos, “Secure

embedded system hardware design – A flexible security and

trust enhanced approach”, Elsevier Journal of Computers and

Electrical Engineering Volume 40, Issue 1, January 2014,

Pages 121–133.

[3]. Jakub Szefer, “Towards fast hardware memory integrity

checking with skewed Merkle trees”, Proceeding HASP '14

Proceedings of the Third Workshop on Hardware and

Architectural Support for Security and Privacy,Article No. 9.

[4]. R. Vaslin, G. G. ans Jean-Philippe Diguet, E. Wanderley , R.

Tessier, and W. Burleson. “Low latency solution for

confidentiality and integrity checking in embedded systems

0

200

400

600

800

1000

1200

1400

1600

D
W

T

D
W

T
+

P
ro

p
o

se
d

D
W

T

D
W

T
+

P
ro

p
o

se
d

D
W

T

D
W

T
+

P
ro

p
o

se
d

Dynamic Static Dynamic

P
o

w
e

r(
m

W
)

100MHz

200MHz

300MHz

400MHz

Level of Security Latency Time Resources Utilized

No Security 4.615ns 44 slices,20Flipflops,65 LUTS

Confidentiality 4.615ns 48 slices,29Flipflops,68 LUTS

Confidentiality and

Integrity

4.630ns 69 slices,65Flipflops,77 LUTS

Sunil D. Bobade and Vijay R. Mankar 27

with off-chip memory”, Workshop on Reconfigurable

Communication-centric Systems-on-Chip, June 2007.

[5]. Sunil Devidas Bobade and Dr. Vijay R .Mankar, “VLSI

Architecture for an Area Efficient Elliptic Curve

Cryptographic Processor for Embedded Systems”, Proceedings

of IEEE International Conference on Industrial

Instrumentation and Control (ICIC 2015), College of

Engineering, Pune , pp: 1038-1042,May 2015.

[6]. Sunil Devidas Bobade and Dr. Vijay R. Mankar, “Area

Efficient Implementation of Elliptic Curve Point

Multiplication Algorithm”, International Journal of Advanced

Computer Science and Applications (IJACSA), United

Kingdom, ISSN: 2156-5570, Vol. 6, Issue 04, pp: 24-34, April

2015.

[7]. Amir Moradi, Alessandro Barenghi, Christof Paar and Timo

Kasper, “On the Vulnerability of FPGA Bitstream Encryption

against Power Analysis Attacks,” Proceedings of the 18th

ACM conference on Computer and communications, pp: 111-

124, October 2011.

[8]. A.Kaleel Rahuman, Dr. G.Athisha, “Reconfigurable

Architecture for Elliptic Curve Cryptography,” Proceedings of

the International Conference on Communication and

Computational Intelligence, pp.461-466, December- 2010.

[9]. Reza Azarderakhsh and Koray Karabina,“A new double point

multiplication algorithm and its application to binary elliptic

curves with endomorphisms”, IEEE Transactions on

Computers, No.99, May 2013.

[10]. Satyajeet Nimgaonkar, Mahadevan Gomathisankaran , Saraju

P. Mohanty, "TSV: A novel energy efficient Memory Integrity

Verification scheme for embedded systems", Journal of

Systems Architecture, No. 59 , pp 400–411,2013.

[11]. Jeremie Crenne, Romain Vaslin, Guy Gogniat, Jean-Philippe

Diguet, Russell Tessier and Deepak Unnikrishnan,

“Configurable memory security in embedded systems”, ACM

Transactions on Embedded Computing Systems (TECS),

Vol.12, No.3, March 2013.

[12]. Ma Haifeng, Yao Nianmin, Cai Shaobin and Han Qilong,

"Memory Confidentiality and Integrity Protection Method

Based on Variable Length Counter", Journal of Algorithms &

Computational Technology, Vol.8, No.4, 2014.

[13]. Satyajeet Nimgaonkar, Mahadevan Gomathisankaran and

Saraju P. Mohanty, “MEM-DnP—A Novel Energy Efficient

Approach for Memory Integrity Detection and Protection in

Embedded Systems” Circuits, Systems and Signal Processing,

Vol. 32, No. 6 , pp 2581-2604,2013.

[14]. Bao Liu and Brandon Wang, "Reconfiguration-Based VLSI

Design for Security", IEEE Journal on Emerging and Selected

Topics In Circuits And Systems, Vol.5, No.1, March 2015.

[15]. Apostolos P. Fournaris and Nicolas Sklavos, “Secure

embedded system hardware design – A flexible security and

trust enhanced approach”, Elsevier Journal of Computers and

Electrical Engineering Volume 40, Issue 1, January 2014,

Pages 121–133.

[16]. Zhenglin Liu, Qingchun Zhu, Dongfang Li, and Xuecheng

Zou, “Off-Chip Memory Encryption and Integrity Protection

Based on AES-GCM in Embedded Systems”, IEEE Design &

Test, Vol.30, No.5, pp: 54 - 62, 2013.

Sunil Devidas Bobade obtained his Engineering Graduate Degree

in Electronics and Telecommunication Engineering from VYWS

College of Engineering, Amravati (India) in 1994, Post Graduate

Degree in Electronics Engineering from S.G.B.Amravati University,

Amravati (India) in 2002.

He has been in the field of teaching since last 19 years and is

presently, working as an Assistant Professor in Department of

Information Technology, Datta Meghe College of Engineering, Navi

Mumbai. He is also working as a research scholar in S.G.B.Amravati

University and is working on development of area efficient

algorithms for protection of memory of embedded systems.

Dr. Prof. Vijay R. Mankar received his B.E. degree in

Electronics and Power Engineering from Government College of

Engineering, Amravati (India) in 1986, M.Tech. in Electronics

Engineering from erstwhile Visvesvaraya Regional College of

Engineering, Nagpur (India) in 1990 and Ph.D. from S.G.B.

Amravati University, Amravati (India) in 2009.

 He has been in the field of teaching since last 23 years and is

presently, working as a Deputy Secretary, MSBTE, Pune Region. He

has served as Head of Department and the Professor, with

Department of Electronics Engineering, Govt. Polytechnic,

Amravati. He has been active in the research as well. His research

interests are in Neural Networks, Design of Embedded system, Data

security. He has published over twenty five research papers in

journals and conferences of national and international repute.

