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Abstract– The constrained operating environments of many 

FPGA based embedded systems require flexible security that can 

be configured to minimize the impact on FPGA area and power 

consumption. To ensure the overall security of embedded 

systems with off-chip memories, it is essential to safeguard the 

confidentiality and integrity of the data that travels between the 

system-on-chip part of the embedded system and the off-chip 

memory. This paper proposes a complete hardware solution for 

embedded systems that fully protects off-chip memory. The 

confidentiality and integrity is achieved by using a modified 

Elliptic Curve Cryptographic (ECC) approach. Initially, with 

respect to the instruction from the processor, the security level 

for the address is identified and based on the security level the 

encryption process follows, thereby storing the data in the form 

of cipher text in the external memory location. During read 

operation, based on the address, the segment id is verified and 

then the decrypted data is allowed to the processor after 

appropriate verification. These modules safeguard external 

memories for embedded processors against a series of well-

known attacks, including replay attacks, spoofing attacks and 

relocation attacks. The complete module is realized using Xilinx 

ISE 14.1 software using verilog coding with a target device as 

virtex-4 xc4vlx200-11-ff1513. The functional verification of the 

design is done by simulating the design.  

 

Index Terms– Elliptic Curve Cryptographic, Embedded 

System, VLSI, Xilinx, Confidentiality and Integrity 
 

I.    INTRODUCTION 

YSTEM security is an increasingly important design 

criterion for many embedded systems. These systems are 

often portable and more easily attacked than traditional 

desktop and server computing systems. FPGAs are quickly 

becoming ubiquitous components in many low-cost 

embedded systems. These systems often contain little more 

than an FPGA, external memory, I/O ports and interfaces to 

sensors and monitors [1]. In addition to standard concerns 

regarding system performance and power consumption, 

security has become a leading issue for many embedded 

applications [2]. Although the programmed contents of 

FPGAs are frequently protected with bitstream encryption, 

external memory transfers can easily be observed and may 

reveal important application information. Some memory 

protection can be provided by simply encrypting data prior to 

external memory transfer. The confidentiality and integrity of 

sensitive information is a critical component of any secure 

system [3]. Typically, this protection is implemented at least 

in part through the use of symmetric algorithms, like DES, 

AES, or countless others.  

The external memory of an embedded system can face a 

variety of attacks Well-known attacks include spoofing, 

relocation, and replay attacks [4]. A spoofing attack (Figure 1) 

occurs when an attacker provides a random data value on the 

bus, causing the system to malfunction. A relocation or 

splicing attack (Figure 2) occurs when an instruction put on 

the bus by an attacker is copied from a different bus address. 

If the whole memory is encrypted with the same key, the 

swapped instruction will be executed instead of the original 

instruction. For example, a swapped instruction could make 

the program jump to malicious code stored in a non-ciphered 

part of memory. The last type of attack a system might face is 

a replay attack (Figure 3). This attack is similar to a relocation 

attack but an attacker provides a data value that was 

previously located at an address before it was overwritten. 

In this paper, a new FPGA-based approach is proposed 

which provides confidentiality and integrity to off-chip data 

accesses made by a processor on the FPGA chip. A hardware-

based security core determines the appropriate data security 

level as memory accesses occur in conjunction with an 

embedded real-time operating system. Proposed approach 

targets replay, relocation, and spoofing attacks. 

Confidentiality in proposed system utilizes the ECC crypto 

processor [5] designed using area efficient Double point 

multiplication algorithm [6] designed in our preliminary 

work. In proposed  implementation, a time stamp value (TS), 

data, data and address of the write data are used as input to an 

ECC encryption circuit to generate the cipher text, which in 

turn is stored in the external memory. Rather than encrypting 

write data directly, as in conventional techniques[7]-[8], our 

approach generates an encrypted data by subjecting a specific 

format of data, memory address and the TS value to the ECC 

module during each write operation. The Time stamp value 

considered here is the private key to the ECC module. The use 

of time stamps and data addresses in our approach protects 

read/write data against replay and relocation attacks [9]. 
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Figure 1: Spoofing attack 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Relocation attack 
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Figure 3: Replay attack 

 

 

 

If a data value is replayed, the TS used for ciphering will 

differ from the one used for deciphering. If a data value is 

relocated, its address will differ from the one used to generate 

the cipher text. In both cases, the deciphered data will be 

invalid. Our FPGA-based security core provides both 

confidentiality and integrity for data stored externally to an 

FPGA which is accessed by a processor on the FPGA chip. 

The complete system is synthesized and simulated using 

Xilinx ISE. Power report, Device utilization summary and 

performance of our system is designed and compared with the 

similar works reported recently. 

The rest of the paper is structured as follows: Related work 

is described in Section II. Research methods and motivation 

for our work is described in Section III. Details of our 

proposed hardware security core are explained in Section IV. 

A description and analysis of experimental results are 

provided in Section V. Section VI concludes the paper. 

 

 

II.    RELATED WORKS 

In [10], Satyajeet Nimgaonkar et al. presented a novel 

energy efficient Memory Integrity Verification scheme for 

embedded systems with the focus on achieving energy 

efficiency in cryptographic Memory Integrity Verification 

(MIV) mechanism. The work contributed with a novel energy 

efficient approach called Timestamps Verification (TSV) to 

provide Memory Integrity Verification in embedded systems. 

The research also elaborated the new technique along with its 

theoretical evaluation, simulation results, and experimental 

evaluation. The results proved that the energy savings in the 

TSV approach are in the range of 36–81% when compared 

with traditional MIV mechanisms. 

Jeremie Crenne et al. in [11] presented a new approach to 

embedded system security focusing on the protection of 

application loading and secure application execution. During 

secure application loading, an encrypted application was 

transferred from on-board flash memory to external double 
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data rate synchronous dynamic random access memory 

(DDR-SDRAM) via a microprocessor. Following application 

loading, the core-based security technique provides both 

confidentiality and authentication for data stored in a 

microprocessor’s system memory. The benefits of the low 

overhead memory protection approaches were demonstrated 

using four applications implemented in a field-programmable 

gate array (FPGA) in an embedded system prototyping 

platform. Each application required a collection of tasks with 

varying memory security requirements. The configurable 

security core implemented on-chip inside the FPGA with the 

microprocessor allowed for different memory security 

policies for different application tasks. An average memory 

saving of 63% was achieved for the four applications versus a 

uniform security approach. The lightweight circuitry included 

to support application loading from flash memory adds about 

10% FPGA area overhead to the processor-based system and 

main memory security hardware.  

Ma Haifeng et al. in [12] introduced an efficient scheme to 

protect data confidentiality and integrity. Based on the local 

characteristic of data accessing, the scheme set different 

counter length for memory area according to different 

accessing frequencies and the counter length can be 

dynamically adjusted. The analysis and the simulation results 

indicated that compared with the counter mode encryption, 

the scheme can decrease memory space overhead and the 

number of overflow. The proposed scheme can be applied to 

other schemes of protecting confidentiality and integrity 

based on counters and can satisfy performance requirements 

for most applications. 

A novel energy efficient approach for MEMory integrity 

Detection and Protection (MEM-DnP) was presented by 

Satyajeet Nimgaonkar et al. in [13]. The key feature of MEM-

DnP was that it can be adaptively tune a memory integrity 

verification module by using a sensor module. This 

significantly reduced the energy overheads imposed on an 

embedded system as compared to the conventional memory 

integrity verification mechanisms. The simulation results 

showed that the average energy saved in the combined 

detection and protection mechanism ranges from 85.5% to 

99.998%. This was substantially higher compared to the 

results achieved in base case simulations with traditional 

memory integrity verification techniques. 

    In [14], Bao Liu and Brandon Wang presented a 

reconfigurable reversible computing-based cryptography, and 

a generic reconfiguration-based VLSI design-for-security 

methodology. In the case studies based on a SPARC V8 

LEON2 processor, the new technique prevented software- or 

hardware-based code injection attacks at cost of 0.72% area 

increase, negligible power consumption increase and no 

performance degradation; it also further prevented a hardware 

Trojan from gaining unauthorized memory access at cost of 

4.42% area increase, negligible power consumption increase, 

and 11.30% critical path delay increase. Apostolos P. 

Fournaris and Nicolas Sklavos [15] provided an overview 

from ES hardware perspective of methods and mechanisms 

for providing strong security and trust. The various categories 

of physical attacks on security related embedded systems 

were presented along with countermeasures to thwart them 

and the importance of reconfigurable logic flexibility, 

adaptability and scalability along with trust protection 

mechanisms is highlighted. Those mechanisms were adopted 

in order to propose a FPGA based embedded system hardware 

architecture capable of providing security and trust along with 

physical attack protection using trust zone separation. The 

benefits of such approach were discussed and a subsystem of 

the proposed architecture is implemented in FPGA 

technology as a proof of concept case study. In [16] Zhenglin 

Liu et al. provided an approach for both data confidentiality 

and integrity authentication and enable a good tradeoff 

between on-chip memory cost, performance overhead and 

security. The proposed double-layer protection mechanism 

works effectively on the occasions where on-chip memory 

overhead was sensitive and the speed requirement is not so 

high. Comparing with tree based approaches, such as AEGIS, 

their approach has a great advantage in terms of performance 

cost, but the on-chip memory overhead is relatively larger 

than that of tree based approaches.  

 

III.    RESEARCH METHODOLOGY 

There are two ways to include security primitives to the 

device. The first one is to try to add software protections. But 

due to the restricted capabilities of embedded systems, 

software approach is not recommended due to the processing 

overhead. The second solution is a more practical. The idea is 

to add some hardware primitives which are running on the fly 

and checking the system integrity. Energy is a critical point as 

soon as embedded systems are targeted especially when they 

are autonomous. Hardware architectures provide the most 

interesting solutions from an energy efficient point of view. 

For example, a hash algorithm consumes 80 times more 

energy in software than a hardware implementation. Here the 

goal is to provide an efficient hardware solution, fully 

transparent for the user (no system stall) and also for the 

software designer who builds application for the device. The 

hardware primitives must take care of the security primitive to 

guarantee the data confidentiality and the system integrity to 

prevent any unauthorized software modification. The 

challenge is to offer area efficient security solution. 

IV.    PROPOSED METHOD 

The proposed security technique for memory security by 

utilizing a Hardware security core, which is realized using 

FPGA logic along with an embedded memory, is depicted in 

figure. The proposed hardware security core is designed with 

an intention in order to switch among different security levels, 

based on the data address expelled by the processor. The 

security level switching can be achieved by adapting a look 

up table containing the address with their corresponding 

security level. In this work we have considered three main 

security levels they are Confidentiality and integrity, 

Confidentiality only and no security. The security level 

classification is done completely based on the user interest 
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and is independent of the operation system or the processor. 

All the parameter values assigned in the security core are 

present in the encrypted data and can be accessed in future. If 

the security level has to be configured, then a fresh memory 

security protocol has to be designed.  

In our proposed implementation the hardware security core 

links the gap between the processor’s cache memory and the 

external memory’s cache memory. All the data transmission 

between the processor and external memory takes place via, 

the proposed hardware security core architecture for ensuring 

the data security. The top module, the hardware security core 

includes sub modules Encapsulation and De-encapsulation 

unit for formatting the data, address and the segment id into 

plain text, a Time stamp generator for generating a count 

value at that instance and used here as a key for ECC 

cryptoprocessor, a segment id generator for generating a 

security level based tag for identifying the security level 

needed for the data, an internal memory is used here for 

storing the segment id, TS value along with the corresponding 

address value and the ECC engine for encrypting the 

encapsulated plain text into cipher text and to decrypt the 

stored data in the external memory to the original plain text. 

In the Figure 4, when a write instruction is activated, the 

write line value becomes 1, thereby enabling the segment id 

generator. The segment id generator, based on the security 

level for the input address controls other sub modules.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Proposed Hardware security core block schematic 
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If the security level for the corresponding address is high then 

the time scale value at that instant is fed as the private key to 

the ECC engine and the data, address and the corresponding 

TS value are subjected to the encapsulation process. The 

encapsulated data is then fed as a plain text M to the ECC 

engine for encryption. The address, segment id, TS value are 

all stored in the internal memory for the integrity checking. If 

the security level for the address location, where the data has 

to be written is low, then no security has to be provided for 

the data corresponding to that address and hence the data can 

be directly stored in the external memory. The algorithmic 

representation when the write signal is activated by the 

processor is shown in Algorithm 1. 

Whenever the read instruction is activated by the processor, 

based on the address location the cipher text stored in the 

external memory is retrieved and in the meanwhile the 

security level for that address is identified from the internal 

memory and by using the TS value (d) stored corresponding 

to the given address, the cipher text is decrypted to a plain 

text M. The plain text M is then de-encapsulated to the 

original format and then the address; TS are compared with 

the stored values for identifying attacks. If the values match, 

then the de-encapsulated data is allowed to pass to the 

processor. Algorithm 2, gives a clear idea about the proposed 

concept for memory data security when the read signal is 

activated by the processor.   
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A) Encapsulation/De-Encapsulation 

The initial step in our technique for memory security is the 

wrapping of the address, data and segment id into a single 

data with a specific format as a plain text for the ECC engine. 

Then the data, address and the segment id from the cipher text 

stored in the external memory are unwrapped and separated as 

the original. This process is handled by a module Encap/ De-

encap shown in the Figure 5. The process of encapsulation 

and de-encapsulation used in our case is depicted in Figure 5. 

For example if a data of length 64-bit and the length of the 

address, TS is 16-bits, 8-bit respectively, then the length of 

the encapsulated data is with a length of 88 bits, with a format 

as shown in Figure 5.   

B) Time stamp generator 

To prevent replay attacks, a simple time stamp generator, 

such as a counter, is used. As shown in Algorithm 1, the TS 

value associated with each data address is incremented by 1 

after each write to the memory. For each new processor write 

request, the system will generate a different key since the 

value of TS is incremented. During a read, the original TS 

value stored in the internal memory is used for comparative 

purposes. The retrieved TS value is provided to ECC during 

the read request. The ECC result will give the same key as the 

one produced for the write request and the encrypted data will 

become plaintext. 

Read-only data, such as processor instructions, do not 

require protection from replay attacks because these data are 

never modified. No TS values are needed for these data so the 

amount of on-chip TS memory space can be reduced 

accordingly. Read-only data may be the target of relocation 

attacks but the address used to compute the ECC guarantees 

protection against these attacks. The use of time stamps and 

data addresses for ECC protects read/write data against replay 

and relocation attacks. If a data value is replayed, the TS used 

for ciphering will differ from the one used for deciphering. If 

a data value is relocated, its address will differ from the one 

used to generate the key. In both cases, the deciphered data 

will be invalid. 

C) Segment id generator 

The segment id generator is a simple LUT based 

architecture used for identifying the security level for a 

particular address location.  When the write instruction is 

activated, the initial process that takes place is the segment id 

generation process. The memory is segmented and security 

level for each address location and their corresponding 

security level are stored in the LUT as shown in figure. When 

the write signal is activated by the processor, the LUT is 

searched for the security level related to that address and with 

respect to that address the remaining modules are enabled. 

The three levels of security and their corresponding Segment 

id are tabulated in table. Same segment ID is used for all 

address belonging to a particular application segment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Encapsulation/ De-encapsulation module 

 

 

 

 

 

 

 

Figure 6: Time stamp generator 
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Table 1: Security level and their corresponding segment id 

Security Level Segment Id 

No security 00 

Confidentiality only 10 

Confidentiality and Integrity 11 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: LUT based segment id generator 

 

 
 

If the security level for the input address belongs to the 

segment which needs no security then the LUT output will be 

‘00’, thereby disabling the encap/De-Encap, TS generator and 

the ECC engine. If the address represents a segment for which 

there should be a need for confidential checking, then the 

segment id generated by the generator will be ‘10’. This 

segment id enables all the sub modules, leaving only the 

storing of data in the internal memory, since the data 

corresponding to the given address does not need an integrity 

checking. In the case of the segment that needs confidentiality 

and integrity, the segment id is ‘11’ and this enables the ECC 

engine, encap/De-Encap and the TS generator. 

D) ECC Engine 

The ECC engine here provides security storage by 

encrypting and decrypting the data. The modified form of the 

ECC crypto processor using double point multiplication is 

adapted in our work. The working process of the ECC engine 

can be discussed below. Initially, the public key is generated 

whenever write signal goes high and let us consider the 

computed public key as Kpu. Since the generation of the public 

key does not depend only on the write signal of the processor 

output, this is similar as that for the conventional method. The 

public key generation is followed by an encryption process. 

Encryption 

For the encryption process, the plain text M, expelled from 

the encapsulation module is fed to the ECC engine along with 

the TS value. The TS generator designed should be of a LFSR 

type, since the private key to the ECC is a random number 

ranging from a value 1 to n-1, where n is the used defined bit 

length. Two random points P1 and P2 that lies in the 

considered elliptic curve equation and two other random 

numbers r1 and r2 are also defined from the range 1 to n-1.  By 

using the double point multiplication, r1 P1 and r2 P2 are 

computed. The cipher text composed of two parts. The first 

part C1 is obtained by performing point addition between the 

two points P1 and P2 and then performing finite field 

multiplication between the added point and the TS value at 

that instant. The second part of the cipher text is obtained by 

adding the plain text M , with the point which is obtained as a 

rest of point addition between  the two points r1 P1 and r2 P2, 

that are generated in the initial public key generation stage 

and multiplying it with the obtained TS value. Both the cipher 

text C1 and C2 are merged and then stored in the external 

memory.  The modified encryption algorithm is shown in 

Algorithm 3.  
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Decryption 

During the decryption process of the ECC engine, the merged cipher texts C1 and C2 and the private key TS stored in the 

internal memory for the corresponding read address executed by the processor are used to decrypt the original plaintext from the 

encrypted cipher texts stored in the external memory. The decryption process of our ECC engine can be better understood from 

the algorithm given below. 
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The plain text thus obtained is then de-encapsulated and then based on the segment id, the integrity checking takes place. (See 

algorithm 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: ECC Engine 
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The ECC engine shown in Figure 8 operates based on the 

encryption and decryption process discussed in algorithms. 

The FSM controls the working of the complete ECC module. 

The finite field arithmetic incorporates the point addition, 

dual point multiplication, squarer and the finite field inverter. 

The operation of the ECC engine is similar as given in 

algorithms 3 and 4. 

 

  

V.    RESULT AND DISCUSSION 

In order to validate the benefits of proposed approach, 

hardware security core is implemented along with a DWT 

(Discrete Wavelet Transform) processor and associated 

memory.  The complete architecture discussed in the proposed 

method is synthesized using Xilinx ISE 14.1 Virtex-4 

xc4vlx200-11-ff1513 as a target FPGA device. The RTL 

schematic and the simulation of  proposed architecture  is 

given in Figure 9 and Figure 10 respectively. 

 

 

 

Figure 9: RTL schematic of proposed hardware security core 

 

 

Figure 10: Simulation of proposed hardware security core  
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Table 2: Comparison of DWT and proposed hardware security core incorporated DWT modules 
 

Parameters Only DWT 
DWT+Proposed Hardware 

security core 
Overhead % 

Target Device 

 

xc4vlx200-11-ff1513 

 

xc4vlx200-11-ff1513 

 

- 

Slices 

 

33 

 

163 

 

-79% 

4 input LUTs 

 

58 

 

250 

 

-76% 

DSP48s 

 

3 3 

 

0% 

GCLKs 

 

1 1 

 

0% 

Delay 

 

4.615ns 

 

4.630ns 

 

-0.3 %( ~0%) 

memory usage 

 

292364 Kb 

 

391064 Kb 

 

-25% 

Maximum Frequency 

 

- 432.302MHz 

 

- 

 

Table 3: Power comparison for DWT and proposed hardware security core incorporated DWT modules 

Frequency(MHz) 

Only DWT DWT+Proposed Hardware security core 

Dynamic 

(mW) 

Static 

(mW) 

Total 

(mW) 

Dynamic 

(mW) 

Static 

(mW) 

Total 

(mW) 

100 9 1344 1353 37 1344 1384 

200 16 1345 1361 41 1347 1389 

300 20 1345 1365 46 1348 1393 

400 23 1346 1369 50 1348 1398 

 

 

Comparing with the DWT architecture without security 

core, which is implemented in the same target device, our 

architecture with security core has an area overhead of 79% in 

terms of slices and 76% in terms of LUTs. This overhead is 

due to the additional hardware resources needed for providing 

security to the processor architecture.  Both the architectures 

include only 3 DSP48s and 1 global clock. The delay time 

exhibited by our proposed architecture is 0.3% is greater than 

that of the conventional DWT architecture without the 

security module. Since the overhead reported here is a 

negligible value the delay overhead will not be considered and 

hence our security core incorporated DWT processor will 

process the data with the same delay time as that is reported 

by the conventional DWT processor. The memory usage of 

the proposed module also has a memory  overhead  of about 

25%, which is because of the additional  internal memory we 

have adapted for storing the address, segment id and the TS 

value.  The hardware security core also reported an overall 

frequency rate of 432.302MHz. 

The bar chart shown in Figure 11 depicts the difference in 

power consumption reported by normal DWT and DWT 

processor architecture with the proposed hardware security 

core. Comparing the power consumption, the static power 

remains the same, whereas the dynamic power differs a 

negligible amount thereby contributing the slight increase in 

the overall power consumption by the complete module.  The 

area and latency reported by various levels of security is 

tabulated in Table 3 below. 
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Figure 11: Power comparison with respect to frequency 
 

 
 

Table 3: Area and Latency reported by various levels of security 

 

 

 

 

 

 

 

VI.    CONCLUSION 

In this paper, a configurable architecture for hardware 

security core offering security services to off chip memory in 

embedded system has been proposed. Core can be configured 

to offer three different levels of security to data. Security core 

houses confidentiality and Integrity engine based on area 

efficient ECC algorithm. The proposed ECC based solution 

for memory security shows no latency delay even after 

invoking different and stringent security levels. The 

experiment was conduction by connecting the designed 

security core with a re-designed DWT processor for 

evaluating the area, power and performance of the 

implemented design.  Experimental results shows that the 

proposed design even though have slight overhead in terms of 

area, the latency reported for the design and power 

consumption is almost stable for three levels of security. This 

security core is not adversely affecting the processing speed 

and not contributing to power consumption. 
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