
International Journal of Computer Science and Telecommunications [Volume 5, Issue 7, July 2014] 1

Journal Homepage: www.ijcst.org

Deepa Godara
1
 and R.K. Singh

2

1
Computer Science Engineering, Uttarakhand Technical University, Dehradun, India

2
Electronic and Communication Engineering, Uttarakhand Technical University, Dehradun, India

1
deepa.fet@mriu.edu.in,

2
rkgec@gmail.com

Abstract— In the field of software engineering, during the

development and maintenance of software, the information on

the classes which are more prone to be changed is very useful.

Developers can make more flexible software by modifying the

part of classes which are more sensitive to changes.The incessant

changes effected in software every day have assumed such an

alarming proportion causing untold and unimagined paradoxes

that it is highly essential to initiate instant and immediate steps

to balance this blitz. It does not mean that no endeavor has been

made in the bye-gone era to tackle the issue. In fact, several

methods to solve this dilemma were introduced in the past by

predicting the changes in the software. To handle this problem

with an eye on good prediction accuracy, a new hybrid model is

introduced in our paper. Our proposed model combines features

such as behavioral dependency generated from UML diagrams,

execution time and trace events generated from source code to

predict change prone class. The rationale behind this approach is

that in a well designed software system feature enhancement or

corrective maintenance should affect a limited amount of

existing code.

Index Terms– UMl Diagrams, Change Prone Class and

Behavioral Dependency

I. INTRODUCTION

HANGE-PRONE classes in software require more

attention because they require increased effort,

development and maintenance costs. Identifying such classes

can enable developers to focus preventive actions such as,

peer-reviews, testing, inspections, and restructuring efforts on

the classes that are sensitive and change prone. As a result,

developers can deliver higher quality products in a timely

manner by efficiently utilizing the resources.

Software systems are incessantly subjected to modification.

This is all the more essential for addition of novel traits, to

become accustomed to contemporary environment, to put

right bugs or to re-factor the source code [4]. Modification

may be on account of diverse factors like improvement,

modification, perfect upkeep or do away with drawbacks.

Several elements of the software may be susceptible to

modifications than their counterparts. A proper understanding

of the classes which are change-prone is highly advantageous

as the change-proneness may be some sign of particular

fundamental quality issues [3]. Managing change is one of the

pivotal factors in the realm of software engineering.

Evolutionary growth has been suggested as a competent

method to tackle risks like modern technology and vague or

varying needs [15]. If a preservation method has the

competence to ascertain the components of the software

which are change-prone then explicit corrective steps can be

initiated. Therefore, a sound knowledge of the domain which

had maximum modification over a certain interval will go a

long way in spotting the crucial change-prone classes and

interactions, then it is easy for development procedure to

concentrate its attention on them [3].

Change-prone classes in software call for meticulous

attention as they need endeavor and augment growth and

preservation overheads. Recognizing and typifying them

enables developers to take remedial measures like peer-

reviews, testing, inspections, and streamlining endeavors on

the classes with the parallel traits in the coming years.

Consequently, developers are capable of exploiting their

wherewithal more professionally and dispense superior

quality products in an appropriate way [9]. If defective classes

are recognized in the initial stages of the growth project’s life

phase, extenuating remedies can be considered including alert

inspections. Forecast patterns by means of plan metrics can

be employed to recognize defective classes in advanced stages

[13]. The accuracy of the forecast effect decides the accuracy

of cost evaluation and quality of project preparation [14].

UML is now extensively acknowledged in the software

engineering circle as a general notational benchmark. It

extends a helping hand to object-oriented plans which on the

other hand promote module reprocess. It is competent to

furnish numerous outlooks of the system under blueprint [6].

The UML based plan enables us to execute prescribed

authentication and corroboration method [5]. The unified

modeling language (UML) is a graphical language for

visualizing, denoting, building, and recording software-

intensive techniques. UML offers a typical method of

scripting system plans, covering abstract things, classes

written in a definite programming language, database schemes

and reusable software components [2]. UML has appeared

C

A New Hybrid Model for Predicting Change Prone Class

in Object Oriented Software

ISSN 2047-3338

Deepa Godara and R.K. Singh 2

assuming the role of the software industry’s leading language

and is, by now, an Object Management Group (OMG)

benchmark. It symbolizes a set of finest engineering exercises

that have been established as triumphant in the modeling of

mega and intricate techniques. OMG is now recommending

the UML pattern for global homogeny for information

technology [8]. As the application of object-oriented plan and

programming grows up in the industry, we see that legacy and

polymorphism are being utilized more often to perk up

internal reprocess in a system and to assist conservation [12].

The rest of this paper is organized as follows. Section II

presents related works. Section III presents our new model for

predicting change prone classes. Section IV presents results,

and finally, Section V concludes the paper.

II. RELATED WORK

Change-proneness prediction is associated with change

impact analysis. The former predicts which classes are likely

to change in the future (i.e., change over successive versions),

whereas the latter predicts which classes may be impacted by

a given change. A brief review of some of the recent

researches is given below.
In the course of the growth and preservation of object-

oriented (OO) software, the data on the classes which are

more prone to change is highly advantageous. Developers and

maintainers are able to create further adaptable software by

changing the segment of classes which are susceptible to

modifications. Conventionally, nearly all change-proneness

forecast has been investigated according to source codes.

Nevertheless, change-proneness forecast in the initial stage of

software growth can offer an easier method for evolving

durable software by changing the existing plan or selecting

substitute plans prior to execution. To tackle this requirement,

Ah-Rim Han et al. [16] have offered an innovative and a

systematic method for estimating the behavioral dependency

measure (BDM) which enables proper forecast of change-

proneness in UML 2.0 brand. The anticipated measure has

estimated on a multi-version medium size open-source project

namely JFreeChart. The outcomes clearly exhibited the fact

that the BDM is a functional pointer and is competent to be

harmonizing to current OO metrics for change-proneness

forecast.

The estimation of change-proneness of components of a

software mechanism is an energetic theme in the arena of

software engineering. Such evaluation may be profitably used

to forecast modification to diverse classes of a system from

one version to the next. Ali R. Sharafat and Ladan Tahvildari

[17] have come out with a novel method to forecast

modifications in an object-oriented software mechanism.

The key dilemma in software growth procedure is to evolve

inaccuracy recognition to initial stages of the software life

span. With this end in view, the Verification and Validation

(V&V) of UML diagrams undertake a very significant

function in identifying defects at the plan stage itself. It has a

discrete relevance for software safety, where it is highly

essential to spot safety faults before they can be subjugated.

V. Lima et al. [18] have played a vital role in this regard by

offering a formal V&V method for one of the most admired

UML diagrams viz. sequence diagrams.

Mehdi Amoui et al. [19] have established that an awareness

of probable time of occurrence of modifications will motivate

managers and developers to design their preservation

functions with superior proficiency. The dilemma is tackled

by the invention of the innovative Neural Network-based

Temporal Change Prediction (NNTCP) structure. This novel

structure has successfully recognized the probable location of

occurrence of such alterations called hot spots, and thereafter

included the time dimension to forecast the probable time of

occurrence of the changes concerned. Premature detection of

error prone and alteration prone classes enables the

developers and experts to utilize their precious time and

resources on these zones of software. Malan V. Gaikwad et al.

[20] have the credit of introducing a novel a method of

employing class hierarchy technique which is easily

comprehend-able and executable. Another significant fact was

that they have not taken any data physically; it was assessed

by that version only. The new model has successfully

spotted change-prone classes and change-proneness of

classes and fault-prone classes and fault-proneness of

classes. Recognizing the change-prone and inaccuracy prone

classes earlier can help concentrating interest on these classes.

Malan V. Gaikwad et al. [21] have intelligent focused on

locating reliance of software that may be obtained by

assessing the proneness of Object Oriented Software. Two

major kinds of proneness were linked with OO software

namely Fault Proneness and Change Proneness. They have

investigated the two methods, matrix and list method,

employed for estimating the proneness and reliance of classes.

In the earlier methods, all needed data was taken manually

and from UML diagrams.

 Recognizing change-prone classes enables developers to

devote further interest to classes with parallel traits in the

future and thus investigation resources and time can be

utilized more efficiently. Xiaoyan Zhu et al. [22] have

gathered a group of static metrics and modification data at

class level from an open-source software product, Datacrow.

Using this data, they have initially authenticate Pareto’s Law

and observed that about 80% of the lines transformed are

situated in only 20% of the classes. Moreover, Emanuel Giger

et al. [24] have presented a paper for capturing the fine-

grained Source Code Changes (SCC) and their semantics and

also Ali R. Sharafat and Ladan Tahvildari [25] have proposed

a novel method for the prediction of changes in object

oriented software system, in which the quality aspects were

qualified by the probability of change in each class.

III. NEW HYBRID MODEL FOR PREDICTING

CHANGE PRONE CLASS

In our proposed work, the main intention is to develop an

hybrid model for predicting change prone classes. The input of

our proposed work is an application. In our work, we have to

predict the change proneness of any given application. In

order to predict, at first, the features of every application need

to be collected from the application. After the identification of

these features, the change proneness in each class can be

predicted by using ID3 Decision tree algorithm. If a class is

International Journal of Computer Science and Telecommunications [Volume 5, Issue 7, July 2014] 3

classified as predicted class for change proneness, then the

value of the change proneness prediction is also calculated.

Fig. 1: Proposed Model for Predicting Change Prone class

Features used to predict change prone classes in object

oriented software are:

i) Features obtained directly from an application

ii) Feature obtained from UML sequence and class

diagrams

A) Features obtained directly from an application

Execution Time and Trace events can be directly obtained

from any application.

Time: From the input source code, we can find this feature

value, time. In source code, many classes and methods are

presented. For a class, there are n numbers of methods

included in it. Each will be called by other classes also. To get

the time feature, we have to calculate the execution time of

each methods of each class. This execution time of every

function facilitates the time feature value, which is helpful in

predicting change prone class.

Trace Events: Some of the methods in the source code are

not executed in the run time. During runtime of the source

code, we have to identify the following things:

(i) What are the methods executed during the runtime?

(ii) How many times, these methods are executed during

the runtime?

Using these details, the feature trace event is computed

directly from a given application

B) Feature obtained from UML sequence and class diagrams

UML Diagrams are one of the diagrams supporting our

work, from which we can compute the features of the

application. UML (Unified Modeling Language) is a general-

purpose modeling language, which helps to represent the

structure of complex software in a visual form, and utilize in

software engineering. In general, 8 kinds of UML diagrams

are generated. But for our purpose we need only 2 kinds of

UML diagrams – (i) Sequence Diagram (ii) Class diagram

UML Sequence Diagram: - Sequence diagram is a kind of

interaction diagram, which represents a sequence of interaction

between the objects.

UML Class Diagram: They help to create graphical logical

models of a system, further used to create the source code for

the classes represented on the diagram. Class diagrams

represent the relationship between classes and interfaces.

Behavioral Dependency: Behavioral Dependency is one of

the important features to predict the change proneness. This

feature is obtained from UML sequence and class diagrams. In

a source code, if one class gets changes; it also affects the

other class. It can be found only through the dependencies

between the classes or objects.

The relationship between the sender object and receiver

object is an example of the behavioral dependency, while

sending a message between two objects. The changes in the

class of the receiver object also affect the class of the sender

object. The inheritance and polymorphism are also taken into

account, during the measurement of behavioral dependency.

The higher changes in behavioral dependency indicate the

possibility of more changes to happen.

Two kind of behavioral dependencies are:

Direct Behavioral Dependency: Consider two objects

1
O and 2

O . If 1
O wants services to be get from 2

O , then a

synchronous message is sent to 2
O and 1

O waits for a reply

that received from 2
O . This kind of dependency is called as

direct behavioral dependency. This is denoted as, 1 2
O O .

Indirect Behavioral Dependency: Consider n objects

, , ...,
1 2 3

O O O On . Indirect dependency between the objects

1
O and nO

 is denoted as,
1

O On , except 2n  that

represents direct behavioral dependency 1 2
O O . Because

the indirect behavioral dependency is represented as

     ........
1 2 2 3 1

O O O O O Onn
  


. Here, “ ”

indicates the External service request relation. For example, if

an object 1
O needs a service from the object

3
O through 2

O ,

then it is indicated as    1 2 2 3
O O O O  .

C) ID3 Algorithm for classifying the classes as change

prone

ID3 (Interactive Dichotomizer version 3) is a simple

decision tree learning algorithm that is used for classification

purpose. It builds decision trees based on greedy search in an

up-down manner, which contains the set of nodes and edges

that connect these nodes. The leaf nodes of the decision tree

have class names and the non-leaf nodes are the decision nodes

which take decision whether a particular class belongs to a

No Yes

UML S.D. and

Class diagrams
Features obtained directly from

an application

Application

Time Trace Events Behavioral

Dependency

ID3 Algorithm for Predicting change prone class

Change

prone

class

Reject
Find

value

Deepa Godara and R.K. Singh 4

class or not. Every non-leaf node corresponds to an input

attribute and every edge to a possible value of that attribute.

The decision nodes or the non-leaf nodes made an attribute test

with every attribute at every tree node being a possible value

of the attribute, through the given input sets. If the attribute

classifies the given input sets perfectly, then the ID3 stops its

process. Otherwise, it recursively operates on all the attributes

in the decision tree to get the “best” attribute. The decision

node to which the attribute goes from the non-leaf node is

decided by the information gain metric of ID3. The resultant

tree provides the classification of the samples given as the

input to this tree.

Fig. 2: General structure of decision tree diagram

The probability of a class belongs to PR is
a

a b
 and the

probability of a class belongs to NR is
b

a b
. The

intermediate information required to make the decision tree as

a source of the result PR or NR is given as,

log log , , 0
2 2(,)

0 ,

a a b b
when a b

I a b a b a b a b a b

otherwise

  
    






The expected information EI needed for the decision tree

with X as the root (()EI X), is found as a weighted average

as given below:

() (,)
1

N a bi iEI X I a bi i
i a b


 

 

IV. EXPERIMENTS AND RESULTS

Our proposed work for predicting change proneness is

implemented using Java. Hospital Management application is

given as the input for our proposed work. In this application, a

large number of classes and methods are presented. These are

taken for the process of our proposed work. The time and

trace events are the two features that are directly obtained

from the input Hospital Management application. The sample

output for the time and trace events features are given in

Table I.

Table I: Output for time and trace events

Classes Feature - Time Feature – Trace Events

a11 0.008 3

a12 0.001 3

a13 0.001 3

a20 0.0 2

Eight 0.001 1

Fifth 0.01 32

The next feature behavioral dependency is generated by

converting the input into UML sequence and class diagram

and then the feature is identified by constructing a model of

Object behavioral dependency model and System object

behavioral dependency model UML diagrams.

Fig. 3: UML sequence diagram

Fig. 4: UML class diagram

After generating these UML SD and class diagrams, the

process of identifying the behavioral dependency feature is

carried out. Some of the behavioral dependency feature values

for some classes are given in the following Table II.

International Journal of Computer Science and Telecommunications [Volume 5, Issue 7, July 2014] 5

Table II: Output for behavioral dependency feature values

Classes
Feature – Behavioral

Dependency

a11 2.690476

a12 0.896825

a13 2.690476

a20 0.309523

Eight 0.246031

Fifth 0.198412

The output from the ID3 provides two classes based on a

particular feature value. The output is to assess whether a

particular class predicts the change-prone or not. The result of

output of ID3 is given in the following Table III.

Table III: Output of ID3 algorithm for identifying the prediction of classes

if(obdm == "0.1984126984126984") {

 class = "no";

} else if(obdm == "2.6904761904761902") {

 class = "yes";

} else if(obdm == "0.8968253968253967") {

 class = "yes";

} else if(obdm == "0.3095238095238095") {

 class = "no";

} else if(obdm == "0.24603174603174602") {

 class = "no";

} else 0 Seconds

V. CONCLUSION AND FUTURE SCOPE

In this paper, an effective change proneness prediction

system was effectively constructed. For our proposed work,

we have taken a hospital management application as an input

application. At first, the features from this application were

taken. The features taken were time, trace events, behavioral

dependency. The features such as time, trace events were

directly computed from the input application and the feature

behavioral dependency was recognized from the UML

diagrams of the input application.. Then the classes utilized in

the application are categorized into two sets which specify

whether the classes forecast the change-proneness or not by

means of a decision tree algorithm, ID3. The tests were

implemented on Java platform for authenticating any of the

application regarding the fact whether it forecasts the change

prone or otherwise. In future, we can add more features such

as frequency and popularity to predict change prone classes.

REFERENCES

[1]. Aida Omerovic, Anette Andresen, Havard Grindheim, Per

Myrseth, Atle Refsdal, Ketil Stolen, and Jon Olnes, "Idea: a

feasibility study in model based prediction of impact of

changes on system quality", In Proceedings of the Second

international conference on Engineering Secure Software and

Systems, pp. 231-240, 2010.

[2]. Mario Kušek, Saša Desic, and Darko Gvozdanović, "UML

Based Object-oriented Development: Experience with

Inexperienced Developers", In Proceedings of 6th

International Conference on Telecommunications, pp. 55-60,

June 2001.

[3]. James M. Bieman, Anneliese A. Andrews, and Helen J. Yang,

"Understanding Change-proneness in OO Software through

Visualization", In Proceedings of the International Workshop

on Program Comprehension, 2003.

[4]. Daniele Romano, and Martin Pinzger, "Using Source Code

Metrics to Predict Change-Prone Java Interfaces", In

Proceedings of 27th IEEE International Conference on

Software Maintenance, pp. 303-312, 2011.

[5]. András Pataricza, István Majzik, Gábor Huszerl and György

Várnai, "UML-based Design and Formal Analysis of a Safety-

Critical Railway Control Software Module", In Proceedings of

the Conference on Formal Method for Railway Operations and

Control Systems, 2003.

[6]. Kathy Dang Nguyen, P.S. Thiagarajan, and Weng-Fai Wong,

"A UML-Based Design Framework for Time-Triggered

Applications ", In Proceedings of 28th IEEE International

Symposium on Real-Time Systems, pp. 39 - 48 , 2007.

[7]. Vahid Garousi, Lionel C. Briand and Yvan Labiche, "Analysis

and visualization of behavioral dependencies among

distributed objects based on UML models", In Proceedings of

the 9th international conference on Model Driven Engineering

Languages and Systems, pp. 365-379, 2006.

[8]. Kleanthis C. Thramboulidis , "Using UML for the

Development of Distributed Industrial Process Measurement

and Control Systems", In Proceedings of IEEE Conference on

Control Applications, pp. 1129-1134, September, 2001.

[9]. A. Güneş Koru, and Hongfang Liu, "Identifying and

characterizing change-prone classes in two large-scale open-

source products", Journal of Systems and Software, Vol. 80,

No. 1, pp. 63-73, January, 2007.

[10]. Nikolaos Tsantalis, Alexander Chatzigeorgiou, and George

Stephanides, "Predicting the Probability of Change in Object-

Oriented Systems", IEEE Transactions on Software

Engineering, Vol. 31, No. 7, pp. 601-614, July 2005.

[11]. M.K. Abdi, H. Lounis, H. Sahraoui, “A probabilistic Approach

for Change Impact Prediction in Object-Oriented Systems”, In

proceedings of 2nd Artificial Intelligence Methods in Software

Engineering Workshop, 2009.

[12]. Erik Arisholm, Lionel C. Briand, and Audun Føyen, "Dynamic

Coupling Measurement for Object-Oriented Software", IEEE

Transactions on Software Engineering, Vol. 30, No. 8, pp.

491-506, August 2004.

[13]. Daniela Glasberg, Khaled El Emam, Walcelio Melo, and

Nazim Madhavji, "Validating Object-Oriented Design Metrics

on a Commercial Java Application", National Research

Council, September 2000.

[14]. Mikael Lindvall, "Measurement of Change: Stable and

Change-Prone Constructs in a Commercial C++ System", In

Proceedings of IEEE 6th International Software Metrics

Symposium, pp. 40-49, 1999.

[15]. Erik Arisholm, Dag I.K. Sjøberg, "Towards a framework for

empirical assessment of changeability decay", The Journal of

Systems and Software, Vol. 53, No.1, pp. 3-14, 2000.

[16]. Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae, and Jang-Eui

Hong, "Behavioral Dependency Measurement for Change-

Proneness Prediction in UML 2.0 Design Models", In

Proceedings of 32nd Annual IEEE International Conference on

Computer Software and Applications, pp. 76-83, 2008.

[17]. Ali R. Sharafat and Ladan Tahvildari, "Change Prediction in

Object-Oriented Software Systems: A Probabilistic

Deepa Godara and R.K. Singh 6

Approach", Journal of Software, Vol. 3, No. 5, pp. 26-40, May

2008.

[18]. V.Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and

Makan Pourzandi, "Formal Verification and Validation of

UML 2.0 Sequence Diagrams using Source and Destination of

Messages", ELSEVIER Electronic notes in Theoretical

Computer Science, Vol. 254, pp. 143-160, 2009.

[19]. Mehdi Amoui, Mazeiar Salehie, and Ladan Tahvildari,

"Temporal Software Change Prediction Using Neural

Networks", International Journal of Software Engineering and

Knowledge Engineering, Vol. 19, No. 7, pp. 995–1014, 2009.

[20]. Malan V. Gaikwad, Akhil Khare, and Aparna S. Nakil ,

"Finding Proneness of S/W using Class Hierarchy Method",

International Journal of Computer Applications, Vol. 22, No.

6, pp. 34-38, May 2011.

[21]. Malan V.Gaikwad, Aparna S.Nakil, and Akhil Khare, "Class

hierarchy method to find Change-Proneness ", International

Journal on Computer Science and Engineering, Vol. 3 No. 1,

pp. 21-27, Jan 2011.

[22]. Xiaoyan Zhu, Qinbao Song, and Zhongbin Sun, "Automated

Identification of Change-Prone Classes in Open Source

Software Projects", Journal of Software, Vol. 8, No. 2, pp.

361-366, February 2013.

[23]. Nachiappan Nagappan, Andreas Zeller ,Thomas Zimmermann,

Kim Herzig and Brendan Murphy, "Change Bursts as Defect

Predictors", In proceedings of IEEE 21st International

Symposium on Software Reliability Engineering, pp. 309-318,

November 2010.

[24]. Emanuel Giger, Martin Pinzger and Harald C. Gall, "Can We

Predict Types of Code Changes? An Empirical Analysis", In

Proceedings of 9th IEEE Working Conference on Mining

Software Repositories, pp. 217-226, 2012.

[25]. Ali R. Sharafat and Ladan Tahvildari, "A Probabilistic

Approach to Predict Changes in Object-Oriented Software

Systems", In Proceedings of IEEE 11th European Conference

on Software Maintenance and Reengineering, pp. 27-38, 2007.

