
International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 1

Journal Homepage: www.ijcst.org

Alareqi Mohammed
1
, Elgouri Rachid

1,2
 and Hlou Laamari

1

1
Laboratory of Electrical Engineering and Energy System.Faculty of Sciences,Ibn Tofail University,Kenitra, Morocco

2
National School of Applied Sciences (ENSA), Ibn Tofail University, Kenitra, Morocco

alareqi_mohammed@yahoo.com, elgouri.rachid@yahoo.fr

Abstract— This paper presents concept of hardware

software co-simulation for image processing using Xilinx

System Generator (XSG). This technique, provides a set of

Simulink blocks (models) for several hardware operations that

could be implemented on various Xilinx FPGA. This paper

presents an efficient architecture for various image processing

algorithms for negatives, image enhancement, contrast

stretching, for grayscale and color images by using fewest

possible System Generator Blocks. Performances of theses

architectures implemented in FPGA card XUPV5-LX110T

prototyping Virtex5 were presented.

Index Terms— Image Processing, Xilinx System Generator

and Field Programmable Gate Array (FPGA)

I. INTRODUCTION

PGAs have demonstrated many benefits in applications

involving large and independent data sets as wells as

the acquisition of the digital data itself. One

fundamental use of an FPGA is digital signal processing

(DSP).Traditionally, DSPs are implemented using ASICs

however, many are now being replaced by FPGA’s due to

the decreasing cost and re-configurability.

As FPGAs continue to increase in chip density in

accordance with Moore’s law, the potential use has also

expanded. The latest boards are equipped with a variety of

I/O ports, AD/DA converters as well as a soft or hard core

microprocessor; this allows the device to act as a system on

chip. Furthermore, software/hardware co-designs are

becoming increasingly popular as a solution to some very

complex and intensive computations using FPGAs.

FPGA’s are widely used to design applications that

require high speed parallel data processing, such as image

processing. Image processing on a computer allows for the

manipulation of pixels within a digital image and can be

altered to serve several purposes.

Application areas of signal processing have grown

dramatically in importance in recent times, in parallel with

the growth of powerful and low-cost processing chips. This

has led, in turn, to many new applications, including

multimedia delivery and hand-held communications

delivery. Image processing is one an important

application among them, which has a strong

mathematical basis.

The quality of image is enhanced by using the image

processing technique which is widely used in many areas

such as medical, video surveillance, target recognition and

robotics application.

The need to process the image in real time, which is

time consuming, leads to this implementation in

hardware level, which offers parallelism, and thus

significantly reduces the processing time. FPGAs are

increasingly used in modern imaging applications image

filtering [1], [2], medical imaging [3], image

compression[4],wireless communication[5]. The drawbacks

of most of the methods are that they use a high level

language for coding. In this paper, we study digital images

and its processing techniques, specifically point processing

algorithms. Digital images are electronics snapshots

taken of a scene or scanned from documents, such as

photographs, manuscripts, printed texts, and artwork. The

digital image is sampled and mapped as a grid of dots

or picture elements (pixels). The digital image is picture

information in digital form. The image can be filtered to

remove noise and obtain enhancement [3]. It can also be

transformed to extract features for pattern recognition. The

image can be compressed for storage and retrieval, as well

as transmitted via a computer network or a communication

system. Digital image processing has found application in

wide variety of fields of human endeavor.

There are number of well defined processes which go to

make up a typical image application. Acquisition,

Enhancement, Restoration, Segmentation and Analysis

are the steps needed by just about every application

which involves image processing [4]. Once images are

inside the computer system, or more specifically, once they

are read inside a program, the images are nothing but

matrices Hence, all the operations that can be applied

to matrices should theoretically be applicable to the

images as well. Image arithmetic is the implementation

of standard arithmetic operations, such as addition,

subtraction, multiplication, and division for images.

F

High Level FPGA Modeling for Image Processing

Algorithms Using Xilinx System Generator

ISSN 2047-3338

Alareqi Mohammed et al. 2

Image arithmetic has many uses in image processing,

both as a preliminary step in more complex operations and

by itself [5]. DSP functions are implemented on two

primary platforms such as Digital Signal Processors (DSPs)

and FPGAs [6]. FPGA is a form of highly configurable

hardware while DSPs are specialized form of

microprocessors. Most engineers prefer FPGA over

DSP because of massive parallel processing capabilities

inherent to FPGA and time to market make it the better

choice. Since FPGAs can be configured in hardware,

FPGAs offer complete hardware Customization while

implementing various DSP applications.

 System Generator [7] is a DSP design tool from Xilinx

that enables the use of the Mathworks model-based

design environment Simulink for FPGA design. It is a

system level modeling tool in which designs are captured

in the DSP friendly Simulink modeling environment

using Xilinx specific Blockset. All of the downstream

FPGA implementation steps including synthesis and place

and route are automatically performed to generate an

FPGA programming file. System Generator provides

many features such as System Resource Estimation to

take full advantage of the FPGA resources, Hardware

Co-Simulation [8] and accelerated simulation through

hardware in the loop co-simulation; which give many

orders of simulation performance increase [9]. This

objective lead to the use of Xilinx System Generator (XSG),

a tool with a high- level graphical interface under the

Matlab, Simulink based blocks which makes it very easy to

handle with respect to other software for hardware

description [10].

II. XILINX SYSTEM GENERATOR

System Generator is a DSP design tool from Xilinx that

enables the use of the MathWorks model-based Simulink

design environment for FPGA design [11]. The design tools

facilitate the design processes by obscuring the technical

knowledge necessary for FPGA a Register Transfer Level

(RTL) design. Instead, a design is modeled using the

intuitive visual environment within Simulink that uses

several specific block sets accelerate the development.

Additionally, System Generator can perform the FPGA

implementation steps: synthesis, mapping, and place and

route to generate the FPGA executable file.

Figure 1: model system generator within Simulink

The Fig. 1 illustrates how a project could be modeled

within Simulink. The Gateway In and Gateway Out blocks

define the input and output from the FPGA respectively.

Outside of this region, Simulink can be used to send

customized signals and data into the simulated FPGA to

observe the results. The System Generator block defines

which type of FPGA board will be used, as well as provide

several additional options for clock speed, compilation type

and analysis.

With a library of over 90 DSP building blocks, System

Generator allows for faster prototyping and design from a

high-level programming stand point. Some blocks such as

the M-code and Black box allow for direct programming in

MATLAB M-code, C code, and Verilog to simplify

integration with existing projects or customized block

behavior. System Generator projects can also easily be

placed directly onto the FPGA as an executable bitstream

file as well as generating Verilog code for additional

optimizations or integration with existing projects within

the Xilinx ISE environment.

III. DESIGN FLOW FOR IMAGE PROCESSING

WITH XILINX SYSTEM GENERATOR

For accomplishing Image processing task using Xilinx

System Generator needs two Software tools to be

installed. One is MATLAB Version R2011a or higher and

Xilinx ISE 14.1. The System Generator token available

along with Xilinx has to be configured to MATLAB. This

result in addition of Xilinx Block set to the Matlab Simulink

environment which can be directly utilized for building

algorithmic model.

The algorithms are developed and models are built for

image negative, enhancement etc… using library provided

by Xilinx Blockset. The image pixels are provided to

Xilinx models in the form of multidimensional image signal

or R|G|B separate color signals in the form of vector in

Xilinx fixed point format.

These models are simulated in Matlab Simulink

environment with suitable simulation time and simulation

mode and tested.

The reflected results can be seen on a video viewer. Once

the expected results are obtained System Generator is

configured for suitable FPGA board. FPGA board that used

here is Virtex5. I/O planning and Clock planning is done

and the model is implemented for JTAG hardware co-

simulation. The System generator parameters are set and

generated. On compilation the netlist is generated and a

draft for the model and programming file in VHDL is

created which can be accessed using Xilinx ISE. The

module is checked for behavioral syntax check, synthesized

and implemented on FPGA. The Xilinx System Generator

itself has the feature of generating User constraints file

(UCF), Test bench and Test vectors for testing architecture.

Xilinx System Generator (XSG) has created primarily to

deal with complex Digital signal processing (DSP)

applications, but it has other application of this theme such

as image processing also work with it. Bitstream

compilation is done which is necessary to create an FPGA

International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 3

bit file which is suitable for FPGA input. The Fig. 2 shows

the Design flow for Xilinx System Generator.

Figure 2: Design flow for Xilinx System Generator

IV. METHODOLOGY OF PROPOSED HARDWARE

IMPLEMENTATION OF IMAGE PROCESSING

METHOD

The image processing method need to be implemented in

hardware in order to meet the real time applications. FPGA

implementation can be performed using prototyping

environment using Matlab/Simulink and Xilinx System

Generator tool. The design flow of hardware

implementation of image processing using XSG is given

in Fig. 3.

Image source and image viewer are simulink block sets

by using these blocks image can give as input and output

image can be viewed on image viewer block set. Image pre-

processing and image post-processing unite are common for

all the image processing applications which are designed

using Simulink blocksets.

Figure 3: Design flow of hardware implementation of image processing

A. Image Pre-Processing Unit

Image preprocessing in Matlab helps in providing input to

FPGA as specific test vector array which is suitable for

FPGA Bitstream compilation using system generator.

 Resize: Set Input dimensions for an image and

interpolation i.e. bicubic it helps in preserving fine

detail in an image.

 Convert 2-D to 1-D: Converts the image into single

array of pixels.

 Frame conversion and buffer: It helps in setting

sampling mode and buffering of data.

The model based design used for image pre-

processing is shown in Fig. 4. The blocks utilized here

are discussed. Input images which could be color or

grayscale are provided as input to the File block.

Figure 4: Image Pre-processing unit

B. Image Post-Processing Unit

Image post processing helps recreating image from 1D

array.

Post-processing uses (Fig.5):

 Data type conversion: It converts image signal to

unsigned integer format.

 Buffer : Converts scalar samples to frame output at

lower sampling rate.

 Convert 1D to 2D: Convert 1D image signal to 2D

image matrix.

 Video viewer: It is used to display the output image

back on the monitor.

Figure 5: Image Post processing unit

V. XILINX MODELS FOR OPERATIONS OF IMAGE

PROCESSING

Development of models is based on algorithms used for

Image Processing. Some of Basic Algorithms that are

mentioned above are described below. Once the FPGA

boundaries have been established using the Gateway

blocks, the DSP design can be constructed using blocks

from the Xilinx DSP block set.

A. Algorithm for Negative Image

The negatives digitized images are useful in many

applications, such as medical imaging and representation in

photographs of a monochrome screen with films with the

idea of using the resulting negative slides as normal.

Inverting the sample values in image produces the same

image that would be found in a film negative (Fig. 6). In

Alareqi Mohammed et al. 4

Matlab this operation can be obtained by XOR function

block or simple Inverter block or by Add sub block.

1. Image Negative using XOR Operations

The Exclusive OR function sets bits that are the same in

each operand to 0 and bits that are different to 1. All pixels

of a certain value can be found by applying XOR function.

Almost a negative image produced by XOR with 255

to the image. Fig. 7 and Fig. 8, show the results of an

image with XSG bloc.

Figure 6: Algorithm for Image Negative using XOR Block XSG

 Input Image Output Image Input Image Output Image

 Figure 7: Results for Grayscale Image Negative Figure 8: Results for color Image Negative

2. Image Negative using NOT Operations

In order to see the negative of the image, we need to change

the values in the image matrix to double precision (invert all

pixel of matrix). This is done to invert the color matrix, so we

can achieve this by using the gate NOT which available in

Xilinx system generator. Fig.10 and Fig. 11 show the results

of an image with XSG blocks.

Figure 9: Algorithm for Image Negative using NOT Block XSG

International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 5

 Input Image Output Image Input Image Output Image

 Figure 10: Results for color Image Negative Figure 11: Results for Grayscale Image Negative

3. Image Negative using Add sub Block

The negative transform exchanges dark values for light

values and vice versa. This is the complement of a grayscale

image like a photographic negative.

The equation is as follows:

Image Neg. (I, J) = max _ gray - image (I, J) (1)

Figure 12: Algorithm for Image Negative using Add sub Block

Input Image Output Image Input Image Output Image

 Figure 13: Results for Color Image Negative Figure 14: Results for Grayscale Image Negative

B. Algorithm for Image Enhancement

In this we shows that how image can be enhanced by

adding a constant to each pixel values. Image filtering can

also be done using model based design different filtering

architecture can be defined and Xilinx block can be created.

Figure 15 to Figure 18 show the simulation model with its

result.

Alareqi Mohammed et al. 6

Figure 15: Algorithm for Grayscale Image Enhancement

Input Image Output Image

 Figure 16: Results for Grayscale Image Enhancement

Figure 17: Algorithm for Color Image Enhancement

 Input Image Output Image

Figure 18: Results for color Image Enhancement

C. Algorithm for Image Contrast stretching

The contrast of an image is its distribution of light

and dark pixels. To stretch a histogram, contrast stretching

is applied to an image to fill the full dynamic range of the

image. We can stretch out the gray levels in the center of

the range by applying piecewise linear function according to

the equation.

New pixel = 3 (old pixel-5) + 2 (2)

where new pixel is its result after the transformation.

Fig.19, 20 and 21, shows the XSG blocks for the above

contrast stretching to the image and the results respectively.

International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 7

Figure 19: Algorithm for image Contrast stretching

 Input Image Output Image

Figure 20: Results for Grayscale Image Contrast stretching

 Input Image Output Image

Figure 21: Results for color Image Contrast stretching

VI. HARDWARE CO-SIMULATION

Once your hardware board is installed, the starting point

for hardware co-simulation is the System Generator model

or subsystem you would like to run in hardware. A model

can be co-simulated, provided it meets the requirements of

the underlying hardware board. This model must include a

System Generator token; this block defines how the model

should be compiled into hardware. The first step in the flow

is to open the System Generator token dialog box and select

a compilation type under Compilation. Steps Followed in

Hardware Co-simulation System generator is configured as:

A. Choosing a Compilation Target

 Part: Defines the FPGA part to be used (Virtex5

XUPV5-LX110T). Resulting library is created as

follows:

Figure 22: Hardware co-simulation block

 Synthesis tool: Specifies the tool to be used to

synthesize the design.

 Hardware Description Language: Specifies the HDL

language to be used for compilation i. e Verilog.

 Create test bench: This instructs System Generator to

create a HDL test bench.

 Design is synthesized and implemented.

B. Clocking Tab

 FPGA clock period(ns): Defines the period in

nanoseconds of the system clock

 Clock pin location: Defines the pin location for the

hardware clock.

C. Invoking the Code Generator

 The code generator is invoked by pressing the

Generate button in the System Generator token dialog

box.

Alareqi Mohammed et al. 8

VII. CONCLUSION

The Xilinx System Generator tool is a new application in

image processing and offers a friendly environment design

for the processing, because processing units are designed by

blocks.

This tool support software simulation, but the most

important is that can synthesize in FPGAs hardware, with

the parallelism, robust and speed, this features are essentials

in image processing.

In this paper, a real-time image processing algorithms

are implemented on FPGA. Implementation of these

algorithms on a FPGA is having advantage of using

large memory and embedded multipliers. Advances in

FPGA technology with the development of sophisticated

and efficient tools for modeling, simulation and

synthesis have made FPGA a highly useful platform.

The design architecture used in this paper can be used for

all Xilinx FPGA Kit with proper user configuration in

system generator block and could be extended to real time

image processing.

REFERENCES

[1]. S. Hasan, A. Yakovlev, and S. Boussakta, “Performance

efficient FPGA implementation of parallel 2-D MRI image

filtering algorithms using Xilinx system generator” IEEE

International Conference on Communication Systems

Networks and Digital Signal Processing (CSNDSP), pp.

765–769, July2010.

[2]. R. Harinarayan, R. Pannerselvam, M. Mubarak Ali, and D.

Kumar Tripathi, “Feature extraction of Digital Aerial

Images by FPGA based implementation of edge detection

algorithms” IEEE International Conference on Emerging

Trends in Electrical and Computer Technology (ICETECT),

pp.631 – 635, March 2011.

[3]. C.John Moses, D. Selvathi, S.Sajitha Rani, “FPGA

Implementation of an Efficient Partial Volume Interpolation

for Medical Image Registration” IEEE International

Conference on Communication Control and Computing

Technologies(ICCCCT-10), pp.132–137,Oct.2010.

[4]. M.F. Bin Othman , N. Abdullah, and N.A. Bin Ahmad

Rusli ,“An Overview of MRI Brain Classification using

FPGA Implementation” IEEE Symposium on Industrial

electronics & Applications (ISIEA),pp.623 – 628, Oct. 2010.

[5]. H. Taha, A.N.Sazish, A.Ahmad, M. S.Sharif, and A. Amira,

“Efficient FPGA Implementation of a Wireless

Communication System Using Bluetooth Connectivity”

IEEE International Symposium Circuits and Systems

(ISCAS), pp.1767-1770, June 2010.

[6]. M.Ownby and W.H.Mahmoud,“A design methodology for

implementing DSP with Xilinx System Generator for

Matlab,” IEEE International Symposium on System Theory,

pp.404-408, March 2003.

[7]. Xilinx Inc., “System Generator for Digital Signal

Processing: http://www.xilinx.com / tools / dsp.htm.

[8]. T. Saidani, D. Dia, W. Elhamzi, M. Atri and R.Tourki,

“Hardware Co-simulation for Video Processing Using

Xilinx System Generator,” Proceedings of the World

Congress on Engineering, vol.1, Jun 2009. London, U.K

[9]. P.Karthigaikumar, K.Jaraline Kirubavathy and K.Baskaran,

“FPGA based audio watermarking–Covert communication,”

Microelectronics Journal, vol.42, pp.778-784, Feb 2011.

[10]. A. T. Moreo, P. N. Lorente, F. S. Valles, J. S. Muro and C.

F. Andres, «Experiences on developing computer vision

hardware algorithms using Xilinx system generator”
Microprocessors and Microsystems, Vol. 29, pp.411-419

November 2005.

[11]. Xilinx System Generator User's Guide, www.Xilinx.com.

http://ieeexplore.ieee.org.ezproxy.uaeu.ac.ae/xpl/tocresult.jsp?isnumber=5760077
http://65.54.113.26/Conference/3202/icccct-ieee-international-conference-on-communication-control-and-computing-technologies
http://65.54.113.26/Conference/3202/icccct-ieee-international-conference-on-communication-control-and-computing-technologies
http://65.54.113.26/Conference/3202/icccct-ieee-international-conference-on-communication-control-and-computing-technologies
http://ieeexplore.ieee.org.ezproxy.uaeu.ac.ae/xpl/mostRecentIssue.jsp?punumber=5512009
http://ieeexplore.ieee.org.ezproxy.uaeu.ac.ae/xpl/mostRecentIssue.jsp?punumber=5512009

