
International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 7

Journal Homepage: www.ijcst.org

Naushad M. PEYRYE and Mussawir A. HOSANY

Abstract—The Internet of today is based on a store-and-

forward mechanism for packet transfer where routers have the

ability of only forwarding packets to most appropriate links

without modifying the data in the packets. However with the

advent of Network Coding, data are encoded and decoded by

routers before packets are forwarded, in view to reduce the

bandwidth and thus to improve throughput. This paper presents

the network coding principle as practically conceivable for

routing by comparing it with basic static routing techniques

through simulation. The result shows that network coding

performance varies with network size and density. We also

investigated a dynamic version of selective flooding and selective

network coding through Routing State Information Ageing

(RSIA) and the result shows some improvements to Flooding and

inherently, but to some lower extent, to Network Coding.

Index Terms—Network Coding, Routing, Flooding, Shortest

Path and RSIA

I. INTRODUCTION

ODAY'S networking devices work on the assumption that

routers and other relaying devices can only forward bunch

of data to most appropriate lines without information

encoding. This scenario makes the relaying nodes' operations

simple and such devices require relatively small processing

and memory capabilities. However, with the increase in

hardware capabilities at reduced cost, routers can be equipped

with higher capabilities allowing the prospect for network

coding.

Network coding is an approach whereby intermediate nodes

within a network encode and decode information in an attempt

to improve the throughput utilization of that network

topology [1], [2].

Network coding has opened up new possibilities or methods

to transfer information from a source node to a destination

node. Network coding is considered as a revolutionary

technology onto which the speedier Internet of tomorrow will

be fully reliant on [3].

Naushad M. Peyrype is with Infosys Limited, Mauritius,

(Email: naushad_peyrye@infosys.com)

Mussawir A. Hosany is with the Department of Electrical and Electronic

Engineering, Faculty of Engineering, University of Mauritius, Mauritius,

(Email: m.hosany@uom.ac.mu)

Recent researches on Network Coding showed that it can

achieve bandwidth savings [1], max-flow from source in

multicast scenarios through linear coding [2]. However, we

still need to show, in practice, how Network Coding behaves

when compared to other routing techniques.

Network Coding is still at rudimentary stage, and most

implementations are based on flooding or multicasting

principles to distribute combined information packets. In

other terms, Network Coding has been thought of as a static

solution for routing. However, adding some congestion

control technique to routing in network coding may lead to a

more efficient network coding routing solution. This can be

achieved by using a dynamic selective version of flooding

thought Routing State Information Ageing (RSIA).

The goals of this paper are to:

 Show the configurations where Network Coding is more

suitable as a routing solution when compared to basic

routing algorithms like flooding and shortest path.

 Show how basic Network Coding can be improved in a

dynamic environment through RSIA.

Section II illustrates the Network Coding Routing Principle

with an example. Section III discusses the RSIA improvement

techniques applicable to Flooding and Network Coding.

Section IV describes the Experimental Set-up and section V

contains the simulation results and discussions.

II. NETWORK CODING ROUTING PRINCIPLE

A. Network Coding Example

Basically a node in a network coding scheme encodes all the

received information from the input links into a single encoded

packet and forward it to all the possible output links [4]. As a

packet propagates down the network, it gets encoded with the

packets available at each node to form a new encoded packet.

When a node receives an encoded packet, it first checks

whether the packets available with this encoded packet have

already been received previously. If so, this encoded packet is

discarded. Otherwise, it is decoded and all the new information

received is queued in a list of received packets. Finally all the

received packets from the list are encoded into a single packet

and this packet is sent to the neighboring nodes [1].

Consider the following network scenario with node A and

node B having to send two different packets pk-A and pk-B to

T

Comparisons of Network Coding with Basic Routing

Techniques

ISSN 2047-3338

Naushad M. PEYRYE and Mussawir A. HOSANY 8

Figure 1: Network Example

Figure 2: Network Example after flow iteration 1

Table 1: Nodes Information after iteration 1

 Nodes Shortest Path Flooding Network Coding

A pk-A pk-A pk-A

B pk-B pk-B pk-B

C

D pk-A, pk-B pk-A, pk-B pk-A, pk-B

E pk-A pk-A

Figure 3: Network Example after flow iteration 2

node C, and assuming similar edge weights, and no delay at

intermediary nodes. For shortest path routing from node A to

C, we will consider route ADC to be the chosen shortest path.

The packet flows for the first hop is shown in Fig. 2.

At this stage, the data present at the different nodes are

(Table 1).

The packet flows for the second hop is shown in Fig. 3.

Please note that during the second hop, packet pk-B is kept

in the out buffer at Node D for edge DC for both Shortest Path

and Flooding, to be sent out in the next hop. After the second

hop, the packets present at the different nodes are (Table 2).

Since with network coding, node C have the ability to

decode pk-B from (pk-A + pk-B) and pk-A, no further hop is

required. However, with both shortest path and flooding, one

more hop is required for both packets pk-A and pk-B to reach

node C.

Table 2: Nodes Information after iteration 2

 Nodes Shortest Path Flooding Network Coding

A pk-A pk-A pk-A, (pk-A + pk-B)

B pk-B pk-A, pk-B pk-B, (pk-A + pk-B)

C pk-A pk-A pk-A, (pk-A + pk-B)

D pk-A, pk-B pk-A, pk-B pk-A, pk-B

E pk-A pk-A

B. Packet Encoding

Consider a set of original messages M1, M2,…, Mn arriving

at an encoding node. Each message Mi is associated to a

unique encoding vector g = {g1, g2,…,gn} [5]. The Information

Vector for the encoded data is achieved by first concatenating

the encoding vector to the message and for all positions

merging the characters using, for example, XOR operation.

i

1

X i

n
i

k

i

gM

 [3]

Consider a set of three messages,

M1 = 100

M2 = 011

M3 = 000

gM can be represented as:

Decoding all encoded messages will require at least n

number of different messages with no linear dependency

among them. However, it can also be possible that having only

two encoded messages (both containing multiple packets) may

be enough to decode a single packet. Since it is required to

keep all innovative messages, we will use a decoding matrix

structure Dm, and decoding can be achieved by using

Gaussian Elimination [5].

For each new row added to Dm (either received or inferred

packet), we need to apply the XOR operation to every other

row in Dm to obtain a new potential packet p. The following

rules then apply:

1) The decoded packet is discarded if

(())i j ij ja p

2) The decoded packet is discarded if

1

0

g

j

jp

3) The decoded packet is an original packet if

D

A

B

C
E

(pk-A + pk-
B)

pk-A

pk-A

pk-A

pk-A

Flooding

Shortest
Path

Network Coding

[pk-

B]
[pk-

B] pk-A

(pk-A + pk-

B)
(pk-A + pk-

B)

D

A

B

C
E

pk-A

pk-A

pk-B

pk-A
pk-B

pk-A

pk-B
pk-A

Flooding

Shortest
Path

Network
Coding

D

A

B

C
E

International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 9

1

1

g

j

jp

Consider that at the receiving end, we first receive X.

No informative packet can be inferred yet,

since 1

(1)i ij

g

j

a

 does not hold. Now we receive another

packet (M1 + M2) as 110111.

 By applying XOR, we can infer p as 001000. Since this

fails rules 1 and 2, it is added to Dm.

P passes rule 3, therefore is an original packet (M3).

Furthermore, applying XOR operation on p to the rows in Dm

fails for rules 1 and 2, therefore no new packet is inferred.

Another packet (M2 + M3) is received as 011011.

By applying XOR to all other rows in Dm, we have

All three packets M1, M2 and M3 are decoded.

III. ROUTING STATE INFORMATION AGEING

In conventional networks, routing is where a decision is

made on which output line to forward a packet when it arrives.

Nodes (routers) in such networks need to know the whole or

part of the network map in order to achieve efficient routing.

In contrast, with basic network coding scenario (and basic

flooding), nodes do not need to know the network map, and

just forwards all the packets it receive to all the output lines.

In some scenario, flooding can be considered very

inefficient, when it is clear-cut known that sending a packet to

some lines will never reach a particular destination. If this

information is known to the node, then opting for a selective

flooding will be more efficient in terms of bandwidth usage.

Selective flooding is where an incoming packet is forwarded to

some (most) of the output lines, with this decision being based

on some high-level information. This means that for such kind

of scenario, some information about the network needs to be

known and stored at the node, adding up complexity to this

routing technique. In case this information changes with time

during packet routing process, a dynamic version of selective

flooding is attained.

For network coding, if a node knows that one of his

neighbors already has a packet or that this neighbor will not

help to make a packet reach its final destination, then there is

no need to include this packet in the encoded packet to be sent

to that node. This may reduce bandwidth utilization and may

considerably reduce the decoding effort of that neighbor.

Routing State Information Ageing (RSIA) is a technique

whereby nodes have some routing information in memory that

decays with time. It mimics the forgetting process in human

psychology. RSIA works by assigning a knowledge value for

each possible path flow at the node, and routing happens based

on these knowledge values. The knowledge values vary during

the lifetime of the routing process based on:

1) information/knowledge gained through reception of

new messages

2) information/knowledge decay.

Consider the following network where Node A needs to

send a packet to Node E.

Figure 4: Network Example 2

Through flooding, A will first send the packet to Node B.

Figure 5: Network Example 2 after flow iteration 1

At B, the packet will be flooded to C and F.

Figure 6: Network Example 2 after flow iteration 2

C

B

D

E F

A

pk-A

pk-A

G

C

B

D

E F

A

pk-A
G

C

B

D

E F

A G

Naushad M. PEYRYE and Mussawir A. HOSANY 10

In next step, the packet will flow to D and E.

Figure 7: Network Example 2 after flow iteration 3

At this stage:

1. pk-A with source data A has searched its destination

E (data).

2. this packet came from incoming line F (information).

3. to send a packet from E to A, sending the packet to F

is advantageous rather than sending the data to D

(knowledge).

In the next iteration, E will receive a second copy of pk-A,

but will discard it. Now consider that G needs to send a packet

pk-G to A. After the packet reaches E, by normal flooding, it

will be flooded to both F and D.

Figure 8: Network Example 2 after reverse flow iteration 1

However since E already has the knowledge about a quick

path to A via F, it is better to send the packet to F only. This

will control the unnecessary replication of packets during

flooding.

Figure 9: Network Example 2 after reverse flow iteration 1 with

Improvement

In most cases, this optimized flooding resembles static

shortest path in practice, and likewise it can happen that, with

time, network traffic increases in the selected path, and by this,

sending the packet through D could have been a better choice.

We can also argue that if another packet pk-A2 with source

A comes from D to E, then we can replace our best path in E

for A via D. But having the second packet pk-G always sent

towards F for A, we can never have a new packet pk-A2 at B

sent for E towards C. It means that our selective option for

flooding will tend towards the same static decisions (like

shortest path) with time.

Logically, the probability of F as the best route for pk-G at

node E is very high when pk-A reached E, but this probability

tends to decrease with time, as things change over time. We

can achieve this principle by introducing knowledge decay

(forgetting) at node E. This is governed by a knowledge decay

rate kdr (e.g., 0.09), a knowledge insignificant value kiv (e.g.,

0.1) and a knowledge significant value ksv (e.g., 0.6).

The knowledge decay rate is the amount of knowledge (for

each unit) that is lost or forgotten per unit time. For example,

at time t, we have a knowledge value of 2.0 and during the

subsequent periods of time, we do not have any knowledge

gain concerning the measured property truth. At the

subsequent time t+1, considering a kdr of 0.09, the knowledge

value will become 2.0 - (2.0 x 0.09) = 1.82. At time t+2, the

knowledge value will decrease to 1.82 – (1.82 * 0.09) =

1.6562.

The knowledge insignificant value is defined as the

minimum knowledge value that is deemed important enough

to be considered different as zero value (may however be not

enough for positive decision making). It also means that the

system does not need to store a knowledge value which is

equal or below the kiv, but can replace this value with zero.

The knowledge significant value is the minimum knowledge

value that allows a positive decision making to be taken. In

other words, equal or above this threshold, the solution being

measured can be considered to be a valid solution. The value

may be computed as a factor ksf (Knowledge Significant

Factor) of the maximum Knowledge value for a particular

node and destination pair. This means that in a well dispersed

configuration, the ksf represents the ratio of links to be chosen

among possible links for a particular flow.

(K-Value(t-1) >kiv)→ K-Valuet = K-Value(t-1) * (1 – kdr)

^ ¬(K-Value(t-1) >kiv) → K-Valuet= 0

The diagram below shows an example of the Knowledge

value for a particular solution starting at value 2.0 and another

one at 1.5 with kdr at 0.09, kiv at 0.1, ksf at 0.6 (assuming that

the first knowledge value is also the maximum for the

destination) and with no further positive influence.

Knowledge Decay Graph

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Unit Time

K
n

o
w

le
d

g
e

 V
a

lu
e

Knowledge Value

Link1

Knowledge Value

Link2

KIV

KSV

Figure 10: KDR, KIV and KSV Influence on Knowledge Value

C

B

D

E F

A

pk-G

G

C

B

D

E F

A

pk-G

G pk-G

C

B

D

E F

A

pk-A

pk-A

G

International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 11

In the above graph, it can be seen that any incoming packet

initially will be forwarded to both Link 1 and Link 2. When

Knowledge value for Link2 drops to KIV and subsequently to

zero, any incoming packet will be forwarded to only Link 1.

However when the knowledge value for Link 1 drops to KIV

and subsequently to zero, any incoming packet will be

forwarded to both Link 1 and Link 2.

Consider that we attribute a knowledge value of 1 when

knowledge is gained (a new packet is obtained) at Node E.

Table 3: Knowledge Value Table Example at iteration 0

Destination Selected Next Knowledge Value

A D 0

A F 0

A G 0

B D 0

B F 0

B G 0

C D 0

C F 0

C G 0

When pk-A is obtained via F, the table is updated as

follows (Table 4).

Table 4: Knowledge Value Table Example at iteration 1

Destination Selected Next Knowledge Value

A D 0

A F 1

A G 0

B D 0

B F 0

B G 0

C D 0

C F 0

C G 0

For each iteration, the knowledge value for each row is

decreased by a decay rate of kdr = 0.09. After two iterations,

the table will be updated as (considering no other packet has

been received) (Table 5).

An incoming packet is then forwarded to all selected path

for that particular destination for which

K-Value ≥max(K-Value) * ksf

Properties of Flooding/Network Coding with Ageing:

Table 5: Knowledge Value Table Example at iteration 2

Destination Selected Next Knowledge Value

A D 0

A F 0.8281

A G 0

B D 0

B F 0

B G 0

C D 0

C F 0

C G 0

 Node does not need to know the structure of the network

as compared to Shortest Path.

 The best path is selected from statistics of real packets;

no predefined path computation is required, as compared

to Shortest Path.

 It has the capability of load balancing and multiple path

selections.

 No control packet needs to be circulated in the network,

as compared to existing dynamic routing algorithms.

 Each node requires enough memory to store the

knowledge table.

IV. EXPERIMENTAL SET-UP

A. Network Simulation Application

A Network Simulation Application (NSA) has been built

that allows any routing technique to be plugged in for

evaluation. The NSA is composed of N number of similar

structured networks (same nodes and links) and each of the

networks is composed of a number of nodes n and bi-directed

links l, and where each node has at least one link to another

node making the network always connected.

Packets (bunch of data, also referred as messages) traverse

the network from node to node via links. At a unit time

(referred to as one hop), only one packet can travel a link.

Other packets that need the currently occupied link have to

wait for the next hop. Furthermore, if more than one packet

reaches a node, the node can process only one packet at a time,

therefore making the other incoming packets to wait for their

turn to get processed. These waiting process have been

implemented using queues because of the First Come First

Serve characteristics required.

Each node has three queues associated with it:

1) Incoming queue

This queue contains the messages received by the

node that are waiting to be processed. Messages may

be received by a node from external nodes (via links

through routing) or by higher protocols within the

node (message creation).

2) Outgoing queue

Naushad M. PEYRYE and Mussawir A. HOSANY 12

This queue contains messages that are waiting to go

through the links to other nodes. For each link

associated to a node, we have one outgoing queue.

Therefore one node has the same number of outgoing

queue as links connected to it.

3) Processing queue

This queue contains messages that have reached their

ultimate destination. Messages put in this queue are

meant to be read by higher protocols, and therefore

no further processing happens at the NSA for the

packets in this queue.

Figure 11: Network Simulation Application Architecture

During each hop, the following processes happen at each

node:

1) The routing module consumes one packet from incoming

queue (may read more than 1 packet for network coding)

2) The routing module decides what to do with the current

packet: sending to one or more outgoing queues or

processing queue or discard the packet.

3) The first packet in the outgoing queue of a link is

transferred to the incoming queue at the other end of the

link (to another node except for self-directed links). This

process is called Hopping.

Each message packet has enough information for routing

modules within nodes to decide how to route the packet till it

reaches its ultimate destination. The data that constitute a

message packet is:

1) Message Id: a unique number in each network that

represents a particular message. Two packets in the same

network can however have the same message id if they

are replicates (e.g. for flooding).

2) Message Data: the information content of the packet.

This data is important to higher level protocols.

3) Source: the node id where the packet was introduced in

the Network. This is useful for determining the next

paths for selective flooding.

4) Destination: the node id where the packets needs to be

routed.

5) Time to Live (TTL): the amount of hop remaining after

which the packet needs to be destroyed. This is useful for

flooding to ensure that packets do not over-propagate.

6) Last Hop: indicates the last node the packet visited. This

is useful for flooding and network coding in reducing

unnecessary network consumption.

7) Merged: indicates a flag to determine whether a packet is

an original packet or a merged packet in network coding

routing.

The Network Simulator Application has been built with the

following functions:

1) Random creation of N number of similar structured

networks with n number of nodes and lavg average link

per node (lavg is only used as an indicative parameter).

2) Perform preliminary computations for different routing

algorithms (E.g. Building Shortest Path tree).

3) Injecting M number of messages/packets at random

(source, destination and data length) in all networks

(same packets injected in all networks for better

comparison).

4) Perform routing for all networks with each network

associated with one routing module, until all packets

reach their respective destination.

5) Provide measurement of network generated like

complexity, average max path length, etc., and results

data like number of hops count required to complete

transfer for each network.

B. Shortest Path Algorithm

The shortest path for each node to other nodes have been

computed by having two arrays hops and paths with size the

same as the number of nodes (each row representing one

node). The hops array (all elements) is initialized with the

number of nodes, and the paths array is set as empty strings.

Next, the hops record for the source node is set to zero.

Starting from the first hop record to the last one, and if the

hops value is less than the number of nodes, the hops value of

the neighbors of the node is set to one more than the current

hop record if this value is less than the existing one. When a

hop records value is changed, the path of the changing index is

also updated by appending the path of the hop under

consideration with the same hop. This process is repeated until

no further change happens.

C. Flooding Algorithm

The flooding module has been implemented by taking care

of circulation problem that can arise with there is loop in the

network. Unnecessary redundant packets have been removed

from the network by the following mechanisms:

1) Time to Live (TTL) of packets

An original packet when inserted in the network has a

maximum hop count value known as TTL value. At

each node where the packet is forwarded, the TTL is

decreased by 1. When the TTL for a packet reaches 0,

it is discarded.

2) Known packets

When a packet reaches a message for the first time,

its reference is stored in a list called history at the

node. Each packet that needs to be processed is first

checked within the history (which contains the

message id), and in case present, is discarded. This

also ensures that no packet is delivered twice to the

higher protocol at the receiving node.

Node Outgoing Queues

Incoming Queue

Processing Queue

Routing

Module

Incoming Links

Higher Protocols

Outgoing Links

International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 13

D. Network Coding

Network coding has been implemented by combining two

packets (for simplicity of implementation) using XOR

operation on bytes. The network coding routing module peeks

(without removing from the queue) into the incoming queue

for the first two packets. It then checks whether it is possible to

encode (merge) these two packets. Two packets are merge-

able when all of the below conditions are met:

1) None of the two packets are already merged.

2) None of the two packets have reached their

destination.

3) None of the two packets are already known packets to

the node (present in history).

4) The size of both packets (data part) are less than or

equal to 1944 (maximum packet size of 2048 – 2

times the added header information of size 52).

5) The merged packet does not already exist in the node

history.

If merging is not possible, the first packet is read from the

input buffer and is processed exactly as flooding. In case

merging is possible, the merged packet is sent over the

network similarly like flooding but only the first packet is

removed from the incoming buffer.

Merging is done on each byte as per the location of the bytes

in the data streams. In other words, byte at position 1 in data

part of packet 1 is XORed with byte at position 1 in data part

of packet 2. The header information for the original packets is

inserted in the data part of the merged packet to allow the latter

to be undistinguished from other packets during hopping

process.

In the Merged packet, only the minimum length is kept,

since it is enough to deduce both packets length given the

following information is already known during the decoding

process:

1) Length of merged packets (length of the bigger packet).

2) Minimum length stored in the merged packets (length of

the smaller packet).

3) Length of the known packet (at least one of the packet

needs to be known to allow decoding).

Having the decoded packet length together with the

merged data and the know packet data, it is easy to decode the

new packet.

E. Routing State Information Ageing

Decision on which links to flood a packet is based on some

knowledge values for each possible flow. In simpler terms,

each node is required to store a knowledge value (truth value)

for each destination link pairs in a table called knowledge

table. For example, in a network of n nodes, and one particular

node has l links, the number of rows in the knowledge table is

(n-1) x l.

One new table has been introduced in the NSA with three

predominant fields denoting the destination, the link to use and

a knowledge value. When the network is built, the knowledge

table is filled for each node with possible destinations and the

node’s available links. The knowledge value is set to zero

since at this time there is no preference for particular paths to

reach a particular destination. We implemented RSIA with kdr

of 0.09, kiv at 0.1, ksf at 0.6.

F. Metrics

For the purpose of comparing the routing strategies, the

number of iterations (unit time) or hops required for all

injected packets to reach their destinations and the thickness

lower bound of the graph have been considered.

The thickness of a graph is the minimum number of planar

sub-graphs needed such that a union of these sub-graphs

makes the original graph. More number of edges with the same

number of hosts may imply a thicker graph. Measuring

thickness is an N-P Hard problem and a good estimate for it is

the thickness lower bound [6].

V. SIMULATION RESULTS AND DISCUSSIONS

A. Network Coding Routing Comparison Experiment

The shortest path, flooding and network coding algorithms

have been implemented in the Network Simulation

Application, and have been executed with number of nodes n

ranging from 10 to 50, lavg ranging from 2 to 6 and number of

messages injected M = 50. The experiment has been done 150

times and the network metrics generated are as follows

(Table 6):

Table 6: Routing Algorithm Comparison Experiment – Node

Frequency Distribution

 Nodes Frequency Percent Cumulative Percent

10 25 20 20

20 25 20 40

30 25 20 60

40 25 20 80

50 25 20 100

Table 7: Routing Algorithm Comparison Experiment – Thickness Lower

Bound Frequency Distribution

 Thickness Lower
Bound

Frequency Percent Cumulative Percent

1.3 2 1.6 1.6

1.4 2 1.6 3.2

1.5 3 2.4 5.6

1.6 3 2.4 8

1.9 10 8 16

2 62 49.6 65.6

2.1 33 26.4 92

2.2 6 4.8 96.8

2.3 4 3.2 100

The graph below shows the general trend for each

experiment performed.

Naushad M. PEYRYE and Mussawir A. HOSANY 14

Comparison of Basic Routing Algorithms with Network Coding

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80

Iterations

%
 p

a
c

k
e

ts
 r

e
a

c
h

e
d

Shortest Path

Flooding

Network Coding

Figure 12: Basic Network Coding Iterations Comparison

In the initial stage of the experiment, Network Coding tends

to send merged packets. Since no node has received any

original packet yet, they need to wait for at least one original

packet to be received to generate two packets. In comparisons,

in the initial iterations, both Shortest Path and flooding are

already sending real packets, making their start performance

better than network coding.

In the next rounds, the original packets start to reach their

destination which means that when one original packet is

received at a node already having a merged packet of the

original packet, another packet can be inferred. This explains

why Network Coding equals the performance of both Shortest

Path and Flooding after few iterations.

However, after consequent rounds, both Flooding and

Network Coding tends to send unnecessary packets (original or

merged packets) all round the network, allowing Shortest Path

to demark from them. Also, when comparing Network Coding

with Flooding, the number of packets (and proportionally

unnecessary packets) to distribute throughout the network

increases for network coding. Thus, flooding performs better

and completes around half number of iterations than network

coding does.

Table 8: Routing Algorithm Comparison Experiment – Network Metrics
Correlations with Node

Node Mean
Standard
Deviation

Coefficient
of Variation

Pearson

Correlation

Coefficient
0.026 0.163 .370**

Sig. (2-tailed) 0.778 0.069 0

N 125 125 125

Kendall's tau_b

Correlation
Coefficient

-0.03 0.082 .256**

Sig. (2-tailed) 0.647 0.213 0

N 125 125 125

Spearman's rho

Correlation
Coefficient

-0.037 0.109 .339**

Sig. (2-tailed) 0.682 0.227 0

N 125 125 125

**. Correlation is significant at the 0.01 level (2-tailed).

For each experimental result, the Mean, Standard Deviation

and Coefficient of Variation of the number of iterations

required for shortest path, flooding and network coding routing

have been computed. These statistical metrics have been

compared with Node and Thickness Lower Bound.

The Table 8 shows the different correlation coefficients of

Node with Mean, Standard Deviation and Coefficient of

Variation.

The correlations above show that network size does not

impact the mean and standard deviation of iterations required

for completion by the three routing methods. However, all

three correlation methods show significant correlation values

(above 0.01) for coefficient of variation.

To further illustrate this relationship, the average for

variation has been computed for each node value as shown in

the graph below (Fig. 13).

Average of Coefficient of Variation

0.7

0.75

0.8

0.85

0 20 40 60

Nodes

Average of
Coefficient of
Variation

 Figure 13: Basic Network Coding - Node against Coefficient of

Variation

This implies that, as the network size increases, distances

between the numbers of iterations required increases between

shortest path, flooding and network coding.

The table below shows the different correlation coefficients

of Thickness Lower Bound with Mean, Standard Deviation

and Coefficient of Variation.

Table 9: Routing Algorithm Comparison Experiment – Network Metrics

Correlations with Thickness Lower Bound

Thickness Lower
Bound

 Mean
Standard

Deviation

Coefficient
of Variation

Pearson

Correlation

Coefficient
-0.171 -0.11 -0.028

Sig. (2-tailed) 0.057 0.222 0.756

N 125 125 125

Kendall's tau_b

Correlation

Coefficient
-.137* -.137* -0.081

Sig. (2-tailed) 0.045 0.044 0.235

N 125 125 125

Spearman's rho

Correlation

Coefficient
-.185* -.178* -0.104

Sig. (2-tailed) 0.039 0.047 0.25

N 125 125 125

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 15

The above table shows little linear correlation between

thickness lower bound and mean, standard deviation or

coefficient variation (Pearson coefficient). However

Spearman’s rho correlation coefficient shows a negative

relationship between thickness and mean or standard deviation,

but no significant relationship for coefficient of variation. This

is further illustrated by plotting thickness against average mean

and average standard deviation.

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5

Thickness Lower Bound

Average of Mean

Average of Standard

Deviation

Figure 14: Basic Network Coding - Thickness Lower Bound against Mean

and Standard of Deviation

The above graphs show slight decreases in standard

deviation and mean as thickness increases. This can be

explained as the denser a network is, more redundant path

exists, and better is flooding and network coding

performances. Since there is no consequent change in

coefficient of variation, an improvement to Shortest Path can

be deduced when thickness increases. The reason for this is

that fewer nodes are bottlenecks, and therefore packets flow

with minimum delay.

Shortest Path performs better in general as compared to

Flooding and Network Coding because it does not pollute the

network and its nodes possessing the advantage of having the

complete network picture. Figure 12 illustrate this.

Since Shortest Path is considered as a benchmark, for

similar network experiments for other routing techniques, the

minimum deviation of the number of iterations for other

routing techniques together with Shortest Path is preferable.

Figure 13 shows that the lesser the number of node, the less

deviation exists. Furthermore, figure 14 shows that after a

threshold of thickness lower bound of 2, the deviations are

less.

Therefore, we can conclude that Network Coding performs

better when the network size is small (less than 10 nodes) and

the network is dense (thickness lower bound is greater than 2,

making the average number of edges per node 4.8 as

minimum).

B. Routing State Information Ageing Experiment

Both flooding and network coding have been implemented

with RSIA (kdr of 0.09, kiv at 0.1, ksf at 0.6) in the Network

Simulation Framework, and have been executed together with

the original flooding and network coding algorithms with

number of nodes n ranging from 10 to 40, lavg ranging from 2

to 6 and number of messages injected M = 50. The experiment

has been done 100 times and the input metrics generated are as

follows (Table 10):

Table 10: RSIA Experiment – Node Frequency Distribution

 Nodes Frequency Percent Cumulative Percent

10 25 25 25

20 25 25 50

30 25 25 75

40 25 25 100

Table 11: RSIA Experiment – Thickness Lower Bound Frequency

Distribution

 Thickness Lower

Bound
Frequency Percent Cumulative Percent

1.8 1 1 1

1.9 6 6 7

2 49 49 56

2.1 32 32 88

2.2 6 6 94

2.3 3 3 97

2.4 3 3 100

For each of the experiment, the reduction rate for both

flooding and network coding has been computed as the

improvement (improved version iteration – normal version

iteration) to normal version ratio. This value gives a statistical

comparison performance measure for RSIA improvement.

The Table 12 shows correlations coefficients for flooding

improvement reduction rate and network coding reduction rate

as compared to node.

Table 12: RSIA Experiment – Improvement Reduction Rate – Node

Correlation

Node

Flooding

Improvement

Reduction Rate

Network Coding

Improvement

Reduction Rate

Pearson

Correlation
Coefficient

0.022 -0.068

Sig. (2-
tailed)

0.828 0.503

N 100 100

Kendall's tau_b

Correlation

Coefficient
0.082 -0.018

Sig. (2-

tailed)
0.282 0.831

N 100 100

Spearman's rho

Correlation

Coefficient
0.124 -0.021

Sig. (2-
tailed)

0.217 0.835

N 100 100

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

Pearson correlation coefficient shows a minor linear

negative relationship between Network Coding Improvement

Reduction Rate and Node, whereas Spearman’s rho coefficient

Naushad M. PEYRYE and Mussawir A. HOSANY 16

shows some positive relationship between Flooding

Improvement Reduction Rate and Ratio.

The graph below shows the rate changes with node (Fig.

15).

 Figure 15: RSIA Experiment – Reduction Rate Percentage against Nodes

The figure above shows a considerable reduction rate for

flooding with medium network size (between 20 and 30).

However, the rate improvement for network coding is always

less than 0.01, and barely changes with network size, thus

disqualifying RSIA as a good optimization for network coding

routing.

Thickness has also been compared to reduction rate as

shown in the coefficient Table 13.

Table 13: RSIA Experiment – Improvement Reduction Rate – Thickness

Lower Bound Correlation

Thickness

Lower Bound

Flooding

Improvement
Reduction Rate

Network Coding

Improvement Reduction
Rate

Pearson

Correlation

Coefficient
-0.076 -0.066

Sig. (2-

tailed)
0.454 0.512

N 100 100

Kendall's tau_b

Correlation
Coefficient

-0.118 -0.125

Sig. (2-

tailed)
0.13 0.148

N 100 100

Spearman's rho

Correlation
Coefficient

-0.137 -0.147

Sig. (2-

tailed)
0.175 0.145

N 100 100

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

The coefficients in table above show very little negative

significant relationship between thickness lower bound and

improvement reduction rates. The average improvement

reduction rate curves in the figure below shows this

relationship.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3

Thickness Lower

Bound

R
a
te

Average of Flood

Reduction Rate

Average of

Network Coding

Reduction Rate

Figure 16: RSIA Experiment – Improvement Reduction Rate against

Thickness Lower Bound

When thickness lower level is minimal, both the average

reduction rate for flooding and network coding are very low.

For flooding, this however increases as the graph gets denser,

whereas for network coding, there is no significant change.

When the thickness lower bound goes above a threshold,

flooding improvement rate starts to decrease. The same

behavior is for network coding, except that network coding

goes to a negative rate implying that with dense networks,

network coding without RSIA performs better than network

coding with RSIA.

Network Coding uses flooding technique inherently during

its routing process. Figure 14 shows that RSIA can increase

flooding performance to 6 to 7 percent for medium size

network (20 to 30 nodes) and figure 15 shows that flooding

with RSIA is more effective when the thickness lower bound is

between the medium ranges (2 to 2.25). It is also seen that the

improvement brought by RSIA to network coding is very

minimal, and inadequate for high consideration.

VI. CONCLUSION AND FUTURE WORKS

The research revealed that in a noiseless environment,

despite the fact that Network Coding does not need to know

the complete network structure and therefore no setup

required, its performance comes closer to Shortest Path when

the network size is small and network density is high. This

makes network coding a good candidate for small LAN setups

with multiple links to nodes, achievable through fixed wireless

arrangements. This can be further investigated by performing

in-depth experiments on such networks for Network Coding.

The results show that Flooding can be sufficiently improved

by introducing RSIA, producing a dynamic selective version

of flooding. This works better in a medium range for both

network size and network thickness for Flooding. Network

Coding, however, is less impacted by RSIA since Network

Coding required some redundancy for it to be effective and

RSIA tries to decrease redundancy in networks.

For this study, RSIA has been modeled using Knowledge

Decay Rate 0.09, Knowledge Insignificant Value 0.1 and

Knowledge Significant Factor 0.6. Further research can be

done by varying the RSIA parameters to investigate the correct

parameters to achieve larger medium ranges for network size

and network density for both selective flooding and selective

network coding.

International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 17

REFERENCES

[1] R. Ahlswede, N. Cai, S.Y.R. LI, R.W. Yeung, “Network

information Flow”, IEEE Transactions on Information Theory,

46, 1204-1216, 2000.

[2] Z. Li, B. Li, “Network Coding in Undirected Networks”, In: ed.

Proceedings of the 38th Annual Conference on Information

Science and Systems (CISS), Princeton, NJ, USA, 257-262,

March 2004.

[3] P. Chou, Y. Wu, K. Jain, “Practical network coding”, In

Allerton Conference on Communication, Control, and

Computing, Monticello, IL, September 2003.

[4] S.Y.R Li, R.W. Yeung, N. Cai, “Linear Network Coding”.

IEEE Transactions on Information Theory, 49 (2), 371-381,

2003.

[5] C. Fragouli, J. Le Boudec, J. Widmer, “Network Coding: An

Instant Primer”. ACM SIGCOMM Computer Communication

Review, 36(1), 63-68, 2006.

[6] S. Skiena, “Implementing Discrete Mathematics Combinatorics

and Graph Theory with Mathematica”. Reading MA: Addison-

Wesley, 1990.

Naushad Muhammad Peyrye

(naushad_peyrye@infosys.com) received his BSc

(Hons) degree in Computer Science and
Engineering with First Class Honors from

University of Mauritius in 2005. From 2006

onwards, he is with Infosys Limited, initially as
Software Engineer, Technology Analyst, and

currently as Technology Lead. During this time,

he worked with large international corporations in
Netherlands and France and had the opportunity

to appreciate the setup, practical workings and

challenges of large network implementations

Mussawir Ahmad HOSANY

(m.hosany@uom.ac.mu) received his B.Eng (Hons)

degree in Electrical and Electronic Engineering with

First Class Honors from University of Mauritius in

1997, MSc degree in Electronics and

Communications Engineering with Distinction from
University of Ulster (Belfast) in 2001 and PhD from

University of Mauritius in Communication Theory in

2004. In 2009, he was awarded the USA Fulbright
postdoctoral fellowship and preceded to California.

He worked on a 9-month research project at the San

Diego State University and successfully designed
and implemented a cross-layer approach for

H.264/AVC over fading channels. He is presently

senior lecturer with the department of Electrical and
Electronic Engineering, Faculty of Engineering of

the University of Mauritius.

