
International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 1

Journal Homepage: www.ijcst.org

Le Dang Nguyen
1
, Dac-Nhuong Le

1
, Tran Thi Huong

2
 and Le Trong Vinh

2

1
Haiphong University, Haiphong, Vietnam

2
Hanoi University of Science, Vietnam National University, Hanoi, Vietnam

nhuongld@hus.edu.vn, nguyenld@hus.edu.vn, tranthihuong@hus.edu.vn, vinhlt@hus.edu.vn

Abstract—Graph matching is used for model-based pattern

recognition of brain images, model design objects in a computer-

aided design, machine learning, data mining, packet filtering,

web phishing, etc. In this paper, we have proposed a new genetic

algorithm for inextract graph matching with many types of

graph such as undirected, directed, weighted, and labeled. The

experimental results show that our proposed algorithm has

achieved a much better performance than other deterministic

algorithms.

Index Terms—Graph Matching and Genetic Algorithm

I. INTRODUCTION

RAPH theory is a powerful and useful versatile tool in

various subfields of computer science and computer

network such as: pattern recognition, scene analysis,

chemistry, molecular biology, computer science, etc. An

important problem in many applications is to find similarities

between objects. If we use a graph-based representation, the

problem turns into finding similarities between graphs, which

includes tasks as exact and inexact matching, where the

graph/subgraph isomorphism detection is a critical operation.

This is also known as graph matching. Graph matching is used

for model-based pattern recognition of brain images, for

model design objects in a computer-aided design, machine

learning, data mining, packet filtering and web phishing, etc.

In general, assume that, there are two graphs, the model

graph GM and the data graph GD – the procedure of comparing

them involves to check whether they are similar or not. We

can define the problem of graph matching as follows: Given

two graphs GM =(VM, EM) and GD = (VD, ED), with |VM| = |VD|,

the problem is to find a one-to-one mapping f :VM→ VD such

that (u,v) EM iff (f(u), f(v))ED. When such a mapping f

exists, this is called an isomorphism, and GD is said to be

isomorphic to GM. This type of problems is said to be the exact

graph matching. The term inexact applied to some graph

matching problems means that it is not possible to find an

isomorphism between the two graphs to be matched. This is

the case when the number of vertices is different in both the

model and data graphs. This may be due to the schematic

aspect of the model and the difficulty to segment accurately

the image into meaningful entities. Therefore, in these cases

no isomorphism can be expected between both graphs, and the

graph matching problem does not consist in searching for the

exact way of matching vertices of a graph with vertices of the

other, but in finding the best matching between them. This

leads to a class of problems known as inexact graph matching.

In that case, the matching aims at finding a non-objective

correspondence between a data graph and a model graph. In

the following we will assume |VM| < |VD|. The complexity of

inexact graph matching is proved in [1] to be NP-complete.

In this paper, we propose a new genetic algorithm to solve

inexact graph matching problems. The rest of this paper is

organized as follows. Section II presents related works.

Section III presents our new algorithm for inexact graph

matching. Section IV presents our simulation and analysis

results, and finally, Section V concludes the paper.

II. RELATED WORKS

A wide spectrum of graph matching algorithms with

different characteristics have been made available recently.

The standard algorithm for graph and subgraph isomorphism

detection is the one by Ullman [2]. Maximum common

subgraph detection has been addressed in [3], [4], [5].

Classical methods for error-tolerant graph matching can be

found in [6]-[10]. Most of these algorithms are particular

versions of the A* search procedure, i.e., they rely on some

kind of tree search incorporating various heuristic look ahead

techniques in order to prune the search space [11]. These

methods are guaranteed to find the optimal solution but

require exponential time and space due to the NP-

Completeness of the problem. Sub-optimal, or approximated

methods, on the other hand, are polynomially bounded in the

number of computation steps but may fail to find the optimal

solution. In [12], [13] a new method is described for matching

a graph G against a database of model graphs G1,…,Gn in

order to find the model Gi with the smallest edit distance d(G,

G

A New Genetic Algorithm Applied to Inexact

Graph Matching

ISSN 2047-3338

Le Dang Nguyen et al. 2

Gi) to G and the models in the database are not completely

dissimilar. The model graphs G1,…,Gn are preprocessed

generating a symbolic data structure, called network of

models. This network is a compact representation of the

models in the sense that multiple occurrences of the same

subgraph sj are represented only once. Consequently, such

subgraphs will be matched only once with the input. Hence the

computational effort will be reduced. In [14], an even faster

algorithm for graph and subgraph isomorphism detection was

introduced. It is based on an intensive preprocessing step in

which a database of model graphs is converted into a decision

tree. At run time, the input graph is classified by the decision

tree and all model graphs for which there exists a subgraph

isomorphism from the input are detected. For example, we

have two directed and labeled graphs GM and GD shown in

Fig. 1.

Figure 1. An example of graph matching

We represent GM and GD with two adjacency matrices M1

and M2. Then, we find all possible permutation matrices of M1,

M2, presented in a decision tree as in Fig. 2.

The interest of inexact graph matching has been increased

in the recent years. Many algorithms have been proposed for

inexact graph matching. We can find in the literature various

techniques applying probability theory to graph matching

problems. A review on general purpose probabilistic graph

matching with different types of probabilistic graphs, different

techniques for their manipulation, and fitness functions

appropriated to use for these problems are presented by

Bengoetxea et al in [15], Cesar et al in [16], Christmas et al in

[17], Coughlan et al in [18], Skomorowski in [19], Williams et

al in [20], Wilson and Hancock in [21]. Probabilistic

relaxation is also used for solving the graph matching problem

when formulated in the Bayesian framework for contextual

Figure 2. A decision tree representing all the adjacency matrices of the graph

GD

Figure 3. A decision tree representing all the adjacency matrices of the graph

GM on decision trees represening the adjacency matrices of GD

label assignment [22], and the same idea is applied in [21]

combining several popular relational distance measures and an

active process of graph-editing.

International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 3

Another important approach is the EM algorithm presented

by Cross and Hancock in [23], Finch and et. al in [24].

Decision trees have also been applied to graph matching,

Messmer and Bunke had used decision trees for solving the

largest common subgraphproblem instead of applying queries

to a database of models [25]. Finally, the fact of formulating

complex graph matching problems as combinatorial

optimization ones is not novel, and many references applying

different techniques in this field can be found in the literature.

Genetic algorithms proposed by Cross et al in [23], Khoo and

Suganthan in [26], Singh et al in [27]. However, some

optimization and modifications still need to be carried out on

the algorithm in order to improve the performance and

accuracy for matching similarities between two graphs.

III. A NEW GENETIC ALGORITHM

In this section, we propose a new genetic algorithm to solve

inexact graph matching problems with many types of graph

such as: directed and indirected, attributed, weighted graphs.

The best correspondence of a graph matching problem is

defined as the optimum of some objective function which

measures the similarity between matched vertices and edges.

This objective function is also called fitness function.

Given two graphs GM =(VM, EM) and GD = (VD, ED), with

|VM|= |VD|, the problem is to find a one-to-one mapping

f:VM→VD such that (u,v) EM iff (f(u), f(v))ED. If the total

number of pairs of vertices be the greater the mapping f is

considered appropriate. Thus, the edge (f (u), f (v)) is the

image of the edge (u, v) in the graph GD. Obviously, each

image of the graph GM through the mapping f is a candidate

for a graph of the number of vertices in the graph GD by the

number of vertices of the graph GM. The total number of

candidates to be considered (for some subgraphs of the graph

GD) is m

nC (m combinations of n).

Genetic algorithms belong to a larger class of evolutionary

algorithms, which generate solutions to optimization problems

using techniques inspired by natural evolution, such

as inheritance, mutation, selection, and crossover. Our genetic

algorithm is described as follows:

A. Represent and decode an individual

Each individual is a vector of n components

I=(i1,i2,…,ij,…im) which means that we map vertex jVM to

vertex ij VD or vertex ij VD is the image of the vertex j
VM. In this way, each individual I has m genes with m vertices

in GD.

B. Initialization

We use fully random initialization in order to initialize a set

of individuals P. Each individual is initialized by a randomly

generated integer m in [1..n].

C. Fitness Function

We define a function to check for each (u,v)EM, such that

 
      1 if , ,

,
0

M Du v E and f u f v E
check u v

otherwise

  
 


 

With different types of graph, the testing conditions for
edge (u,v) satisfying the map f are different:

 Undirected graph (one of the edges has no direction.
Edge (u,v) is identical to edge (v,u)): A condition is
said satisfied by function f if given edge (u,v) is an
edge of graph GM then (f(u), f(v)) is an edge of graph
GD, where f(u), f(v) are images of u, v over function f.

 Directed graph: A condition is said satisfied by
function f if given edge (u,v) is an arc of graph GM then
(f(u), f(v)) is an arc of graph GD.

 Undirected Weighted graph (Directed): A condition is
said satisfied by function f if given (u,v) is an edge
(arc) of graph GM then (f(u), f(v)) is an edge (arc) of
graph GD and their weights must be equal.

 Undirected Labeled graph (Directed): This case is
similar to the case of Undirected Weighted
graph (Directed). However, vertices of the two graphs
are labeled the same.

The cost function cost(I) calculates the total of all edges
(u,v) satisfying the mapping f is given by:

  
,

cost (,)
Mu v V

I check u v


  

The fitness function is given by:

  
1

cost()
fit I

I
  

If the cost(I) be the greater then fit(I) is as close to 1 as
possible so the solution I is as close to the optimal solution.

D. The crossover operator

This operator mimics the mating process in the nature. The
edges (u,v)EM mapped to (f(u),f(v)) ED can not carry
consecutive genes. Therefore, we use a multi-crossover type to
derive the good parts from two individuals to obtain greater
hybrid offsprings. To ensure the randomness of the crossover
operator, we choose any two individuals randomly in the
population with the crossover probability smaller than
crossover probability pc (pc is a parameter of the algorithm).

E. The mutation operator

The mutation operation is a kind of random change in the
individuals. In our algorithm, pointwise mutation is adopted,
in which one gene in an individual is changed with a certain
probability, referred to as the mutation probability. This
operator allows the algorithm to search for new and more
feasible individuals in new corners of the solution spaces. To
do mutation, an individual is randomly selected from the

individuals. First, we randomly pick an integer  1..k n (k is

called the mutation point); then, randomly select vertex j to
replace vertex k in individual I, so that vertex j does not
coincide with any vertex of individual I. The mutation

http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm

Le Dang Nguyen et al. 4

operator is a random process so to ensure that the algorithm
will randomly select individuals in any population I
(individual I represents a subgraph of GD,). I is randomly
generated with a mutation probability of individuals. It is
smaller than mutation probability pm (pm is a parameter of the
algorithm).

F. Selection of individuals for the next generation

During each successive generation, a proportion of the
existing population is selected to breed a new generation.
Individual solutions are selected through a fitness-
based process. In each generation, we select P individuals with
the highest fitness value among the existing population.

G. Termination condition

The algorithm will stop after G generations (G is a
parameter) or when the average value of the individuals is
unchanged or we can find an individual I satisfying cost(I) =
|EM|.

H. Our algorithm

Pseudocode of our genetic algorithm for inextract graph
matching problem is described as follows:

--

Genetic Algorithm for Graph Matching

Begin

t=0;

P(0)= initial_Population();

P(0).fit=getFit(P(t));

While(Termination condition is not satisfied)

{

 // Crossover probability

rd1= rand()%10/10.000;

 if (rd1<pc)

 {

 child_c = crossover(P(t));

child_c.fit =getFit(child_c);

 }

 // Mutation probability

rd2 = rand()%10/10.000;

if (rd2<pm)

{

 child_m = mutation(P(t));

 child_m.fit =getFit(child_m);

 }

P(t+1) = bestFit(P(t), child_c, child_m);

t++;

}

End.

--

A. The complexity of our algorithm

The complexity of our algorithm is O(P.G.m
2
.n

2
) where, P

is the population size, G is the number of iterations, m and n

are the number of vertices of GM and GD respectively.

IV. EXPERIMENTS AND RESULTS

A. The problems tackled

For the experiments, we used 3 types of graph which are

undirected, weighted and labeled graphs. We evaluated the

algorithm performance by implementing and executing the

GA algorithm using C language.

For each graph class, we experimented with 3 different

sizes (less than 10 vertices, 10 to 20 vertices, and greater than

20 vertices). Graph data templates are the standard data used

in [1-3] for experimental matching algorithms in general

graphs. Fig. 4 and Fig. 5 represent the graph structure of our

experiments.

Figure 4. Graphs GM and GD having 10-20 vertices

Figure 5. The Graphs GM and GD having more than 20 vertices

B. Numerical Analysis

For the graphs in Fig. 5 and Fig. 6, we remove the labels

and weights to obtain the corresponding graph classes. The

average results of 100 executions of our algorithm are given in

Table 1 and Table 2 with the graph size greater than 10

vertices.

International Journal of Computer Science and Telecommunications [Volume 5, Issue 5, May 2014] 5

TABLE I. RESULT WITH GRAPHS GM AND GD HAVING10-20 VERTICES

Population size (P) Iterations(G) Optimal solution in the ith iteration

Undirected graph

P = 8 30 11

P = 10 20 9

P = 16 15 6

P = 24 10 5
Undirected graph weighted

P = 10 30 21

P = 16 20 13

P = 24 15 7

P = 32 10 4
Undirected graph labeled weighted

P = 16 40 29

P = 20 30 25

P = 24 25 18

P = 32 20 15

TABLE II. RESULT OF GRAPHS GMAND GD HAVE MORE THAN 20 VERTICES

Population size (P) Iterations (G) Optimal solution in the ith iteration

Undirected graph

P = 16 40 40

P = 20 30 27

P = 24 25 20

P = 32 20 15
Undirected graph weighted

P = 10 45 39

P = 16 40 35

P = 24 30 20

P = 32 20 29
Undirected graph labeled weighted

P = 16 45 35

P = 24 35 28

P = 32 30 20

P = 38 25 18

The experimental results show that genetic algorithm can be

applied on various graph types. In order to illustrate the

effectiveness of the genetic algorithm, we have compared its

performance with deterministic hill climbing. In case the

graph has less than 20 vertices, the two algorithms produce the

same solutions. However when the number of vertices is

greater than 20, the deterministic algorithm starts to slow

down significantly; while performance change in the generic

algorithm is negligible. The number of iterations G in the

genetic algorithm depends on the matching of the graph; while

the number of iterations of the Hill algorithm depends on the

number of vertices.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new genetic algorithm for

inextract graph matching with many types of graph such as

undirected, directed, weighted, and labeled. The experimental

results show that our proposed algorithm has achieved a much

better performance than other deterministic algorithms.

However, there are still rooms for improvement. An effective

analysis of the genetic operators, the correspondence between

population size, the number of generations with a sample size

of graphs and graph models are our next research targets. In

addition, as much of the time of genetic algorithm is spent on

executing genetic operators; our new approach is to apply PSO

(Particle Swarm Optimization) and ACO (Ant Colony

Optimization) algorithms to solve the problem.

ACKNOWLEDGEMENT

This research is partly supported by the QG.12.21

project of Vietnam National University, Hanoi.

REFERENCES

[1] Michael, G. R., and David, J. S (2003), Computers and

Intractability, A Guide to the Theory of NP-Completeness. W.

H. Freeman and Company.

[2] J. R. Ullman (1976), An algorithm for subgraph isomorphism,

J. Assoc. Comput. Mach. 23, pp.31-42

[3] McGregor, J. (1982). “Backtrack search algorithms and the

maximal common subgraph problem”, Software-Practice and

Experience, Vol. 12, pp. 23–34

[4] Levi, G. (1972). “A note on the derivation of maximal common

subgraphs of two directed or undirected graphs”, Calcolo, V ol.

9, pp. 341–354.

[5] Pelillo, M. (1998). “ A unifying framework for relational

structure matching”, Proc. 14th ICPR, Brisbane, 1998

[6] Eshera, M.A. and Fu, K.S. (1984). “ A graph distance measure

for image analysis”, IEEE Trans. SMC 14, pp.398–408.

[7] Sanfeliu, A. and Fu, K.S. (1983). “ A distance measure

between attributed relational graphs for pattern recognition”,

IEEE Trans. SMC, V ol. 13, pp. 353–363.

[8] Shapiro, L.G. and Haralick, R.M. (1981). “Structural

descriptions and inexact matching”, IEEE Trans. P AMI, Vol.

3, pp. 504–519

[9] Tsai, W.H. and Fu, K.S. (1979). “Error-correcting

isomorphisms of attributed relational graphs for pattern

recognition”, IEEE Trans. SMC 9, pp. 757–768

[10] Wong, E.K. (1990). “Three-dimensional object recognition by

attributed graphs”, In H.Bunke and A.Sanfeliu (eds.): Syntactic

and Structural Pattern RecognitionTheory and Applications,

pp. 381–414. World Scientific

[11] Adel HLAOUI and Shengrui WANG, A New Algorithm for

Inexact Graph Matching, University Laboratories R & D

program.

[12] Messmer, B.T. (1995). “Efficient graph matching algorithms

for preprocessed model graphs”, PhD thesis, University of

Bern, Switzerland

[13] Messmer, B.T. and Bunke, H. (1998a). “ A new algorithm for

error tolerant subgraph isomorphism”, IEEE Trans. P AMI 20,

pp. 493–505.

[14] Messmer, B.T. and Bunke, H. (1999a). “ A decision tree

approach to graph and subgraph isomorphism detection”,

Pattern Recognition 32, 1999, pp. 1979-1998

[15] Bengoetxea E., Larranaga P., Bloch I., Perchant A., 2001.

Image recognition with graph matching using estimation of

distribution algorithms, In: Proc. Medical Image Understanding

and Analysis MIUA, pp. 89–92

[16] Cesar R., Bengoetxea E., Bloch I., 2002. Inexact graph

matching using stochastic optimization techniques for facial

feature recognition, In: Internat. Conf. on Pattern Recognition.

[17] Christmas, W.J., Kittler, J., Petrou, M., 1995. Structural

matching in computer vision using probabilistic relaxation.

IEEE Trans. Pattern Anal. Machine Intell. 17 (8), 749–764.

Le Dang Nguyen et al. 6

[18] Coughlan James, Shen Huiying, 2004. Shape matching with

belief propagation: Using dynamic quantization to

accommodate occlusion and clutter, In: Proc. 2004 IEEE Conf.

on Computer Vision and Pattern Recognition Workshop

[19] Skomorowski, M., 1999. Use of random graph parsing for

scene labeling by probabilistic relaxation. Pattern Recognition

Lett. 60, 649–956.

[20] Williams, M., Wilson, R.C., Hancock, E.R., 1997. Multiple

graph matching with Bayesian inference. Pattern Recognition

Lett. 18 (11–13), 1275–1281.

[21] Wilson, R.C., Hancock, E.R., 1999. Graph matching with

hierarchical discrete relaxation. Pattern Recognition Lett. 20

(10), 1041–1052

[22] Christmas, W.J., Kittler, J., Petrou, M., 1995. Structural

matching in computer vision using probabilistic relaxation.

IEEE Trans. Pattern Anal. Machine Intell. 17 (8), 749–764

[23] Cross, A.D.J., Myers, R., Hancock, E.R., 2000. Convergence

of a hillclimbing genetic algorithm for graph matching. Pattern

Recognit. 33(11), 1863–1880.

[24] Finch, A.W., Wilson, R.C., Hancock, E.R., 1998. Symbolic

graph matching with the EM algorithm. Pattern Recognit. 31

(11), 1777–1790

[25] Messmer, B.T., Bunke, H., 1999. A decision tree approach to

graph and subgraph isomorphism detection. Pattern Recognit.

32, 1979–1998

[26] Khoo, K., Suganthan, P., 2002. Evaluation of genetic operators

and solution representations for shape recognition by genetic

algorithms. Pattern Recognition Lett. 23 (13), 1589–1597

[27] Singh, M., Chaudhury, A., Chatterjeeand, S., 1997. Matching

structural shape descriptions using genetic algorithms. Pattern

Recognit. 30 (9), 1451–1462.

Nguyen Dang Le received the BSc degree in computer science and the

MSc degree in information technology from College of technology, Vietnam
National University in Hanoi, Vietnam, in 1996 and 2005, respectively. He

currently works in Haiphong University, Vietnam. His research interests

include algorithm theory, network and wireless security.

Dac-Nhuong Le received the BSc degree in computer science and the
MSc degree in information technology from College of Technology, Vietnam

National University, Vietnam, in 2005 and 2009, respectively. He is a lecturer

at the Faculty of information technology in Haiphong University, Vietnam. He
is currently a Ph.D student at Hanoi University of Science,Vietnam National

University. His research interests include algorithm theory, computer network
and networks security.

Tran Thi Huong received the BSc degree in Applied Mathematics and
Informatics from Hanoi University of Science, Vietnam, in 2013. She is a

lecturer at the Faculty of Mathematics, Mechanics andInformatics, Hanoi

University of Science, Vietnam National University. She research interests

include algorithm theory, computer network.

Vinh Trong Le received the MSc degree in Information Technology
from Faculty of Mathematics, Mechanics andInformatics, Hanoi University of

Science, Vietnam National University in 1997, PhD degrees in Computer

Science from Japan Advanced Institute of Science and Technology in 2006,
respectively. He is currently Associate professor at the Faculty of

Mathematics, Mechanics andInformatics, Hanoi University of Science,

Vietnam National University. His research interests include algorithm theory,
network and wireless security.

