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Abstract—Graph matching is used for model-based pattern 

recognition of brain images, model design objects in a computer-

aided design, machine learning, data mining, packet filtering, 

web phishing, etc. In this paper, we have proposed a new genetic 

algorithm for inextract graph matching with many types of 

graph such as undirected, directed, weighted, and labeled. The 

experimental results show that our proposed algorithm has 

achieved a much better performance than other deterministic 

algorithms.  

 

Index Terms—Graph Matching and Genetic Algorithm 

 

I. INTRODUCTION 

RAPH theory is a powerful and useful versatile tool in 

various subfields of computer science and computer 

network such as: pattern recognition, scene analysis, 

chemistry, molecular biology, computer science, etc. An 

important problem in many applications is to find similarities 

between objects. If we use a graph-based representation, the 

problem turns into finding similarities between graphs, which 

includes tasks as exact and inexact matching, where the 

graph/subgraph isomorphism detection is a critical operation. 

This is also known as graph matching. Graph matching is used 

for model-based pattern recognition of brain images, for 

model design objects in a computer-aided design, machine 

learning, data mining, packet filtering and web phishing, etc. 

In general, assume that, there are two graphs, the model 

graph GM and the data graph GD – the procedure of comparing 

them involves to check whether they are similar or not. We 

can define the problem of graph matching as follows: Given 

two graphs GM =(VM, EM) and GD = (VD, ED), with |VM| = |VD|, 

the problem is to find a one-to-one mapping f :VM→ VD such 

that (u,v) EM iff (f(u), f(v))ED. When such a mapping f 

exists, this is called an isomorphism, and GD is said to be 

isomorphic to GM. This type of problems is said to be the exact 

graph matching. The term inexact applied to some graph 

matching problems means that it is not possible to find an 

isomorphism between the two graphs to be matched. This is 

the case when the number of vertices is different in both the 

model and data graphs. This may be due to the schematic 

aspect of the model and the difficulty to segment accurately 

the image into meaningful entities. Therefore, in these cases 

no isomorphism can be expected between both graphs, and the 

graph matching problem does not consist in searching for the 

exact way of matching vertices of a graph with vertices of the 

other, but in finding the best matching between them. This 

leads to a class of problems known as inexact graph matching. 

In that case, the matching aims at finding a non-objective 

correspondence between a data graph and a model graph. In 

the following we will assume |VM| < |VD|. The complexity of 

inexact graph matching is proved in [1] to be NP-complete. 

In this paper, we propose a new genetic algorithm to solve 

inexact graph matching problems. The rest of this paper is 

organized as follows. Section II presents related works. 

Section III presents our new algorithm for inexact graph 

matching. Section IV presents our simulation and analysis 

results, and finally, Section V concludes the paper. 

II. RELATED WORKS 

A wide spectrum of graph matching algorithms with 

different characteristics have been made available recently. 

The standard algorithm for graph and subgraph isomorphism 

detection is the one by Ullman [2]. Maximum common 

subgraph detection has been addressed in [3], [4], [5]. 

Classical methods for error-tolerant graph matching can be 

found in [6]-[10]. Most of these algorithms are particular 

versions of the A* search procedure, i.e., they rely on some 

kind of tree search incorporating various heuristic look ahead 

techniques in order to prune the search space [11]. These 

methods are guaranteed to find the optimal solution but 

require exponential time and space due to the NP-

Completeness of the problem. Sub-optimal, or approximated 

methods, on the other hand, are polynomially bounded in the 

number of computation steps but may fail to find the optimal 

solution. In [12], [13] a new method is described for matching 

a graph G against a database of model graphs G1,…,Gn  in 

order to find the model Gi with the smallest edit distance d(G, 
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Gi) to G and the models in the database are not completely 

dissimilar. The model graphs G1,…,Gn are preprocessed 

generating a symbolic data structure, called network of 

models. This network is a compact representation of the 

models in the sense that multiple occurrences of the same 

subgraph sj  are represented only once. Consequently, such 

subgraphs will be matched only once with the input. Hence the 

computational effort will be reduced. In [14], an even faster 

algorithm for graph and subgraph isomorphism detection was 

introduced. It is based on an intensive preprocessing step in 

which a database of model graphs is converted into a decision 

tree. At run time, the input graph is classified by the decision 

tree and all model graphs for which there exists a subgraph 

isomorphism from the input are detected. For example, we 

have two directed and labeled graphs GM and GD shown in 

Fig. 1. 

 

Figure 1.  An example of graph matching 

 

We represent GM and GD with two adjacency matrices M1 

and M2. Then, we find all possible permutation matrices of M1, 

M2, presented in a decision tree as in Fig. 2. 

The interest of inexact graph matching has been increased 

in the recent years. Many algorithms have been proposed for 

inexact graph matching. We can find in the literature various 

techniques applying probability theory to graph matching 

problems. A review on general purpose probabilistic graph 

matching with different types of probabilistic graphs, different 

techniques for their manipulation, and fitness functions 

appropriated to use for these problems are presented by 

Bengoetxea et al in [15], Cesar et al in [16], Christmas et al in 

[17], Coughlan et al in [18], Skomorowski in [19], Williams et 

al in [20], Wilson and Hancock in [21]. Probabilistic 

relaxation is also used for solving the graph matching problem 

when formulated in the Bayesian framework for contextual 

 

  

 

 

Figure 2.  A decision tree representing all the adjacency matrices of the graph 

GD 

 

Figure 3.  A decision tree representing all the adjacency matrices of the graph 

GM on decision trees represening the adjacency matrices of GD  

 

label assignment [22], and the same idea is applied in [21] 

combining several popular relational distance measures and an 

active process of graph-editing. 
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Another important approach is the EM algorithm presented 

by Cross and Hancock in [23], Finch and et. al in [24]. 

Decision trees have also been applied to graph matching, 

Messmer and Bunke  had used decision trees for solving the 

largest common subgraphproblem instead of applying queries 

to a database of models [25]. Finally, the fact of formulating 

complex graph matching problems as combinatorial 

optimization ones is not novel, and many references applying 

different techniques in this field can be found in the literature. 

Genetic algorithms proposed by Cross et al in [23], Khoo and 

Suganthan in [26], Singh et al in [27]. However, some 

optimization and modifications still need to be carried out on 

the algorithm in order to improve the performance and 

accuracy for matching similarities between two graphs. 

III. A NEW GENETIC ALGORITHM 

In this section, we propose a new genetic algorithm to solve 

inexact graph matching problems with many types of graph 

such as: directed and indirected, attributed, weighted graphs. 

The best correspondence of a graph matching problem is 

defined as the optimum of some objective function which 

measures the similarity between matched vertices and edges. 

This objective function is also called fitness function. 

Given two graphs GM =(VM, EM) and GD = (VD, ED), with 

|VM|= |VD|, the problem is to find a one-to-one mapping 

f:VM→VD such that (u,v) EM iff (f(u), f(v))ED. If the total 

number of pairs of vertices be the greater the mapping f is 

considered appropriate. Thus, the edge (f (u), f (v)) is the 

image of the edge (u, v) in the graph GD. Obviously, each 

image of the graph GM through the mapping f is a candidate 

for a graph of the number of vertices in the graph GD by the 

number of vertices of the graph GM. The total number of 

candidates to be considered (for some subgraphs of the graph 

GD) is m

nC  (m combinations of n). 

Genetic algorithms belong to a larger class of evolutionary 

algorithms, which generate solutions to optimization problems 

using techniques inspired by natural evolution, such 

as inheritance, mutation, selection,  and crossover. Our genetic 

algorithm is described as follows: 

A. Represent and decode an individual 

Each individual is a vector of n components 

I=(i1,i2,…,ij,…im) which means that we map vertex jVM to 

vertex  ij VD or  vertex  ij VD is the image of the vertex j
VM. In this way, each individual I has m genes with m vertices 

in GD. 

B. Initialization 

We use fully random initialization in order to initialize a set 

of individuals P. Each individual is initialized by a randomly 

generated integer m in [1..n]. 

C. Fitness Function 

We define a function to check for each (u,v)EM, such that 

 
      1 if  , ,

,
0

M Du v E and f u f v E
check u v

otherwise

  
 


 

With different types of graph, the testing conditions for 
edge (u,v) satisfying the map f are different: 

 

 Undirected graph (one of the edges has no direction. 
Edge (u,v) is identical to edge (v,u)): A condition is 
said satisfied by function f if given edge (u,v) is an 
edge of graph GM then (f(u), f(v)) is an edge of graph 
GD, where f(u), f(v) are images of u, v over function f. 

 Directed graph: A condition is said satisfied by 
function f if given edge (u,v) is an arc of graph GM then 
(f(u), f(v)) is an arc of graph GD. 

 Undirected Weighted graph (Directed): A condition is 
said satisfied by function f if given (u,v) is an edge 
(arc) of graph GM then (f(u), f(v)) is an edge (arc) of 
graph GD and their weights must be equal. 

 Undirected Labeled graph (Directed): This case is 
similar to the case of Undirected Weighted 
graph (Directed). However, vertices of the two graphs 
are labeled the same. 

The cost function cost(I) calculates the total of all edges 
(u,v) satisfying the mapping f is given by: 

  
,

cost ( , )
Mu v V

I check u v


  

The fitness function is given by: 

  
1

cost( ) 
fit I

I
  

If the cost(I) be the greater then fit(I) is as close to 1 as 
possible so the solution I is as close to the optimal solution. 

D. The crossover operator 

This operator mimics the mating process in the nature. The 
edges (u,v)EM mapped to (f(u),f(v)) ED can not carry 
consecutive genes. Therefore, we use a multi-crossover type to 
derive the good parts from two individuals to obtain greater 
hybrid offsprings. To ensure the randomness of the crossover 
operator, we choose any two individuals randomly in the 
population with the crossover probability smaller than 
crossover probability pc (pc is a parameter of the algorithm). 

E. The mutation operator 

The mutation operation is a kind of random change in the 
individuals. In  our  algorithm,  pointwise mutation is adopted, 
in which one gene in an individual is  changed  with  a  certain  
probability,  referred  to  as  the mutation probability. This 
operator allows the algorithm to search for new and more 
feasible individuals in new corners of the solution spaces. To 
do mutation, an individual is randomly selected from the 

individuals. First, we randomly pick an integer  1..k n  (k is 

called the mutation point); then, randomly select vertex j to 
replace vertex k in individual I, so that vertex j does not 
coincide with any vertex of individual I. The mutation 

http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Evolutionary_algorithm
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operator is a random process so to ensure that the algorithm 
will randomly select individuals in any population I 
(individual I represents a subgraph of GD,). I is randomly 
generated with a mutation probability of individuals. It is 
smaller than mutation probability pm (pm is a parameter of the 
algorithm). 

F. Selection of individuals for the next generation 

During each successive generation, a proportion of the 
existing population is selected to breed a new generation. 
Individual solutions are selected through a fitness-
based process. In each generation, we select P individuals with 
the highest fitness value among the existing population. 

G. Termination condition 

The algorithm will stop after G generations (G is a 
parameter) or when the average value of the individuals is 
unchanged or we can find an individual I satisfying cost(I) = 
|EM|. 

H. Our algorithm 

Pseudocode of our genetic algorithm for inextract graph 
matching problem is described as follows: 

 
------------------------------------------------------------------------------------ 

Genetic Algorithm for Graph Matching 

--------------------------------------------------------------------------- 
Begin 

t=0; 

P(0)= initial_Population(); 

P(0).fit=getFit(P(t)); 

While(Termination condition is not satisfied) 

{ 

 // Crossover probability 

rd1= rand()%10/10.000; 

 if (rd1<pc) 

 { 

       child_c = crossover(P(t)); 

child_c.fit =getFit(child_c); 

  } 

 // Mutation probability 

rd2 = rand()%10/10.000; 

if (rd2<pm) 

{ 

    child_m = mutation(P(t)); 

    child_m.fit =getFit(child_m); 

  } 

P(t+1) = bestFit(P(t), child_c, child_m);   

t++; 

} 

End. 

------------------------------------------------------------------------------------ 

 

A. The complexity of our algorithm 

The complexity of our algorithm is O(P.G.m
2
.n

2
) where, P 

is the population size, G is the number of iterations, m and n 

are the number of vertices of GM and GD respectively. 

IV. EXPERIMENTS AND RESULTS 

A. The problems tackled 

For the experiments, we used 3 types of graph which are 

undirected, weighted and labeled graphs. We evaluated the 

algorithm performance by implementing and executing the 

GA algorithm using C language. 

For each graph class, we experimented with 3 different 

sizes (less than 10 vertices, 10 to 20 vertices, and greater than 

20 vertices). Graph data templates are the standard data used 

in [1-3] for experimental matching algorithms in general 

graphs. Fig. 4 and Fig. 5 represent the graph structure of our 

experiments. 

 

 

 

Figure 4.  Graphs GM and GD having 10-20 vertices 

 

 

Figure 5.  The Graphs GM and GD having more than 20 vertices 

 

B. Numerical Analysis 

For the graphs in Fig. 5 and Fig. 6, we remove the labels 

and weights to obtain the corresponding graph classes. The 

average results of 100 executions of our algorithm are given in 

Table 1 and Table 2 with the graph size greater than 10 

vertices.  
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TABLE I.  RESULT WITH GRAPHS GM AND GD HAVING10-20 VERTICES 

Population size (P) Iterations(G) Optimal solution in the ith iteration 

Undirected graph 

P = 8 30 11 

P = 10 20 9 

P = 16 15 6 

P = 24 10 5 
Undirected graph weighted 

P = 10 30 21 

P = 16 20 13 

P = 24 15 7 

P = 32 10 4 
Undirected graph labeled weighted 

P = 16 40 29 

P = 20 30 25 

P = 24 25 18 

P = 32 20 15 

 

TABLE II.  RESULT OF GRAPHS GMAND GD HAVE MORE THAN 20 VERTICES 

Population size (P) Iterations (G) Optimal solution in the ith iteration 

Undirected graph 

P = 16 40 40 

P = 20 30 27 

P = 24 25 20 

P = 32 20 15 
Undirected graph weighted 

P = 10 45 39 

P = 16 40 35 

P = 24 30 20 

P = 32 20 29 
Undirected graph labeled weighted 

P = 16 45 35 

P = 24 35 28 

P = 32 30 20 

P = 38 25 18 

 

The experimental results show that genetic algorithm can be 

applied on various graph types. In order to illustrate the 

effectiveness of the genetic algorithm, we have compared its 

performance with deterministic hill climbing.  In case the 

graph has less than 20 vertices, the two algorithms produce the 

same solutions. However when the number of vertices is 

greater than 20, the deterministic algorithm starts to slow 

down significantly; while performance change in the generic 

algorithm is negligible. The number of iterations G in the 

genetic algorithm depends on the matching of the graph; while 

the number of iterations of the Hill algorithm depends on the 

number of vertices. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a new genetic algorithm for 

inextract graph matching with many types of graph such as 

undirected, directed, weighted, and labeled. The experimental 

results show that our proposed algorithm has achieved a much 

better performance than other deterministic algorithms. 

However, there are still rooms for improvement. An effective 

analysis of the genetic operators, the correspondence between 

population size, the number of generations with a sample size 

of graphs and graph models are our next research targets. In 

addition, as much of the time of genetic algorithm is spent on 

executing genetic operators; our new approach is to apply PSO 

(Particle Swarm Optimization) and ACO (Ant Colony 

Optimization) algorithms to solve the problem. 
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