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Abstract— Location information of sensor node is necessary in 

wireless sensor network since data transmission between nodes 

may be senseless without knowing the accurate locations of the 

nodes in network keeping in the view of various applications of 

WSN such as military surveillance, localization, tracking, 

battlefield monitoring, structural health monitoring, routing etc.  

In this paper, we propose to investigate the physical field model 

for location estimation, i.e. localization, in the form of partial 

differential equation (PDE).  Within the proposed framework, 

the estimation algorithm of sensor node localization problem 

using finite element method (FEM) has been employed to obtain 

the solution based on physical phenomena (e.g., temperature) 

governed by discretizing the 1–D heat equation. The 

computational results illustrates that the significant effect and 

better accuracy using elegant finite element approach by means 

of simulation results. 

 

Index Terms— WSN, Localization, Heat Equation and FEM 

 

I. INTRODUCTION 

fast growing field which consists of sensing, 

computing, communication, actuation and power 

components, is known as Wireless Sensor Network (WSN) 

and the respective nodes are sensor nodes.  With the low-

power circuit and network technologies, tens to thousands of 

such nodes, in WSN, communicate through wireless channels 

for information sharing and cooperative processing.  Sensor 

nodes form a sensor network equipped with a processor, 

memory, wireless communication capabilities, sensing 

capabilities and a power source (battery) on board.  In 

environmental sensing applications such as bush fire 

surveillance, water quality monitoring and precision 

agriculture, for example, sensing data without knowing the 

sensor location is meaningless. 

Localization refers to the process of estimating the 

locations of sensors using measurements between 

neighbouring sensors such as distance measurements and 

bearing measurements [9].  Localization methods could be 

classified in terms of active localization and passive 

localization.  The active localization  

methods estimate the locations based on signals that are 

artificially stimulated and measured by the sensor network, 

e.g., artificially generated acoustic events. That means, the 

localization is performed in controlled environments and 

incurs significant installation and maintenance costs.  The 

passive localization methods occur in a non-controlled 

environment, where stimuli are generated in a natural and 

autonomous fashion. The advantage of passive methods is that 

they do not need additional infrastructure, and thus keep the 

installation and maintenance costs at a very low level [3].  In 

addition, location estimation may enable applications such as 

inventory management, intrusion detection, road traffic 

monitoring, health monitoring, etc.  Nodes may be either 

static, in most existing senor network, or mobile are deployed 

on cellular phones. 

Keeping in the view of passive localization of sensor nodes, 

we present model-based approach based on local observations 

in terms of physical phenomena (e.g., temperature).  

Mathematical and computational modeling is an art which 

translate the real life facts into the mathematical problems, 

solving the mathematical problems and interpret the result in 

terms of real world problems for the better understanding of 

society.  The problems of computer science and engineering 

pose the new challenges for mathematical and computational 

models.  Wireless Sensor Network (WSN) is an emerging 

interdisciplinary field which involves mathematical modeling 

of localization especially generates a physical field model.  

The problem of field estimation is similar to the problem of 

solving a partial differential equation with initial and 

boundary conditions.  The recent advent of Wireless Sensor 

Networks (WSNs) offers a significantly different yet attractive 

approach to field estimation [18]. 

Finite element method (FEM) is one of the most flexible 

and attractive approach for solving localization problem in the 

form of partial differential equation. The finite element 

method is an advanced mathematical cum numerical technique 

for solving boundary value problems [1], [2], [20].  It uses 

variational methods (i.e., the Calculus of variation) to 

minimize an error function and produce a stable solution.  The 
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method involves dividing the solution domain into a finite 

number of simple sub domains known as elements and to work 

an appropriate method of [20] constituting solution in each 

sub region or group or sub regions.  The approximation error 

to be orthogonal to this subspace, the FEM reduces the 

boundary value problem to a square system of linear 

equations. 

Mathematics offers many significant and striking 

techniques for field estimation in Wireless sensor network’s 

(WSNs).  The work has focused on the creation of an 

information field useful to mobile agents, human or machines, 

which accomplish tasks based on the information, provided by 

the sensor network [4]-[6], [12]-[17] and [21], [22].  In order 

to address sensor networks in a comprehensive manner, the 

sensor network community has initiated a research program 

that includes work in the areas of sensor network 

architectures, programming systems, reference 

implementations, hardware. 

In this paper, we propose a novel framework for field 

estimation based on the combination of WSN field 

measurements with a physical model in the form of a partial 

differential equation. The mathematical formulation of the 

temperature problem as a constrained optimization problem, 

in which the constraints originate from a finite element model 

of the partial differential equation subject to initial and 

boundary conditions.  The objective is to minimize the error 

between the estimated and actual/true values at the sensor 

nodes in the form of temperature. The proposed framework is 

derived here for one particular type of PDE, namely the one-

dimensional (1-D) heat equation, to generate the special 

information of WSN field measurements [3, 7].  The finite 

element method has been employed to obtain the solution of 

one dimensional problem of temperature between sensor 

nodes.  A computer program has been developed in MATLAB 

7.11 for the problem and simulated on Core i3 processor with 

2.13 GHz processing speed, 64-bit machine with 320 GB 

memory. 

II.    PROBLEM FORMULATION 

Given a strong model of the physical phenomenon and 

a set of sensor nodes on unknown, but fixed, locations and use 

this computational model to determine the sensor node 

locations [8, 10].  Let us consider 1-D heat equation in 

circular region is given by [1]-[3]: 

 

1
( , )

T T
D r s r t

t r r r

   
  

   
        

(1)  

where, D  is the thermal conductivity.  The temperature 

( , )T x t is measured at J discrete locations ( , )j jx y 1,2.....j J .  

Each of the J sensor nodes provides N field measurements 

(with   1 1 [1...1]N T  ), ( , )s r t  is the source term. It is 

assumed that, at time t = 0 ms, the cell maintains initial 

temperature of 0.1.  Thus the initial condition along the time is 

taken as [3], [11]: 

0 0tT               (2)  

The first boundary of temperature between sensor nodes 

is assumed at ( 0)r  . The boundary condition is taken as 

[3], [18]: 

      
0
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  where, n  is normal to the surface.      
At another boundary, it is assumed to remain at background 

temperature of T∞ i.e. 0 degree c. Thus we have:

 

  

1
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(4)  

A. Discretization of the region 

The solution region is divided into 10 linear elements, as 

shown in Figure 1.  The numbers inside the circles denote the 

element number [3], [7]. 

 

 

    

 

 

 

 

 

 

        

Figure 1: Discretization of the solution region 

 

 

The discretized variational form of equation (1) can be 

written as: 
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  (5)  

where, e = 1, 2, ......., 10.  In the term outside the integral, 
( ) 1e   for e = 1 and ( ) 0e  for rest of the elements. The 

shape function of concentration variation within each element 

is defined by [1]-[2], [20]: 
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From equations (6) and (7), we get  
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where,    ie
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From the equation (7), we have 
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where,     
1

e e
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Substituting c
(e) 

 from equation (6), (8) and (9) we get 
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 (12)  

Now the integral I
(e)

 can be written in the form:  
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Now, we extremize I w.r.t. each nodal temperature Ti, as given 

below: 
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This leads to a following system of linear differential 

equations [20]. 
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(19)  

where, 
1 2 11..............T TT T

,
 X andY are the system matrices, 

and Z  is system vector.  The Crank Nicolson Method has 

been used along the time to obtain the solution of system (19) . 

III. RESULTS AND DISCUSSION 

In practical implementation, the radius of circle and time is 

taken 1 meter (m) and 10 milliseconds (ms), respectively [3], 

[18].  The nodes are spread in the space, uniformly in circular 

region.  The noisy input function is given by ( , ) exp( )s r t t  . 
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Figure 2: Radial distribution of temperature for different values of time (in 

milliseconds): (a) t = 2ms, (b) t = 4ms, (c) t = 6ms, (d) t = 8ms and (e) t = 10 

ms 

 

 

Figure 2(a), 2(b), 2(c), 2(d) and 2(e) shows radial and 

temperature distribution between the sensor nodes for 

different values of time t = 2ms, 4ms, 6ms, 8ms and 10ms, 

respectively.  These figures illustrate the error analysis 

between true and predicted nodal values in terms of 

temperature and it is found that the error estimation is higher, 

for lower value of time t = 2ms, is 0.5954m and lower, for 

higher value of time t = 10 ms, is 0.2353m. Therefore, error 

estimation is inversely proportional to the time.  On the other 

hand; figure 3(a), 3(b), 3(c), 3(d) and 3(e) shows temporal and 

temperature distribution between the sensor nodes for 

different values of radius r = 0.2m, 0.4m, 0.6m, 0.8m and 1m, 

respectively.  

The estimation results i.e. error analysis between true and 

predicted points are visualized in Figure 3 and it is found that 

the solution, in terms of temperature distribution between the 

sensor nodes, is estimated even at actual points with an 

appropriate certainty between r = 0.2m to r = 0.6m and after 

that it also gives some uncertainty from r = 0.8m to r = 1m.  

Furthermore, it is clear that the measurements of the estimated 

solution between the sensor nodes can be significantly 

affected. 
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3(d) 
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Figure 3: Temporal distribution of temperature for different values of radius 

(in meters): (a) r = 0.2m (b) r = 0.4m (c) r = 0.6m (d) r = 0.8m and (e) r = 1m 

 

 

 

The three dimensional visualization of radial and temporal 

distribution for temperature distribution between true and 

estimated nodal points, is depicted in Figure 4.  Figure 4(a) 

represents for temperature distribution at true nodal values 

and Figure 4(b) represents for temperature distribution at 

estimated nodal values. It improves the solution of 

temperature distribution for node localization problem of 

wireless sensor networks. 

To evaluate the performance of the proposed estimation 

method, sensors nodes are randomly deployed in a finite space 

and heat equation obtains predicted temperatures for sensor 

nodes at given assumed locations then uses a distance norm to 

obtain an estimation between the actual and predicted 

temperature values.  Finally, the objective is to determine the 

minimum error.  If the best estimation is within a guesses is 

certain threshold then the algorithm returns the locations that 

best fit to the actual data. Otherwise, new guesses are 

generated from perturbations of the best guesses and again 

generates the new random samples with increasing values. 

By comparing the above estimations, it is found that by 

increasing the values of random selections of locations, the 

computational error between true nodes and predicted nodes 

becomes minimize.  It means that error accuracy depends on 

best selection of random locations i.e. the error deduction also 

depends on the selection of data in large amount of sensor 

locations. 
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4(b) 

 

 

Figure 4: Radial and temporal distribution of temperature: (a) True nodal 

points and (b) Estimated nodal points 

 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a new framework for sensor 

node localization in WSN using FEM. For simulations we 

consider 1–D field, with initial boundary values, in the 

circular region governed by a heat equation and it illustrates 

that the proposed FEM-constrained estimation algorithm 

consistently outperforms than the estimation method based on 

WSN measurements only and under certain conditions.  

Furthermore, we can propose model needs to be generalized 

in the case of dynamic fields governed by heat equation that 
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also include time derivatives in two and three dimensional 

problems.  We can also focus to the geometry of the region 

and different parameters related to sensor networks could also 

be included. 
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