Abstract—The growing number of ontologies on the web has emerged as a new research issue in the field of semantic web. It is now common to have more than one ontology on the web for a specific domain. These ontologies may have various types of heterogeneities and therefore it is a challenging task for information retrieval systems to utilize the knowledge of all available ontologies. A number of ontology alignment systems have been proposed by researchers in the last decade to bridge this semantic gap. During an alignment process, the entities from different ontologies are compared to find the semantically similar entities. For this purpose, various similarity measures are discussed according to the type of ontological heterogeneities. This paper investigates most common types of heterogeneities exist in ontologies and matchers which can deal with such heterogeneities. Furthermore, the role of aggregation methods in alignment systems have also been analyzed and discussed.

Index Terms—Semantic Gap, Ontology Alignment, Similarity Measures and OWL

I. INTRODUCTION

ONTOLOGIES play an ever-imperative role in semantic interoperability because they define basic terms, relations of a domain concept and rules for relating these terms [1], thus, enabling machines to process information between heterogeneous platforms and applications. NF. Noy et. al. [2] stated the main reasons for developing ontology are given as: (i) to share common understanding of the structure of information among people or software agents, (ii) to enable the reuse of domain knowledge and to make domain assumptions explicit, and (iii) to separate domain knowledge from the operational knowledge and to analyze domain knowledge.

Sadaqat Jan is with the University of Engineering and Technology, Mardan Campus, Pakistan (e-mail: sadaqat@nwfpuet.edu.pk). Ph: +92-937-9230295 Fax: +92-937-9230296.
Ibrar Ali Shah is with the University of Engineering and Technology, Mardan Campus, Pakistan.
Imran Khan is with the University of Engineering and Technology, Mardan Campus, Pakistan (e-mail: imrankhan@nwfpuet.edu.pk).
Fahim Ullah Khan is with the University of Engineering and Technology, Mardan Campus, Pakistan (e-mail: fahimwazir@gmail.com).
Muhammad Usman is with the University of Engineering and Technology, Mardan Campus, Pakistan (e-mail: usman@nwfpuet.edu.pk).

Ontologies are used in almost every field of information systems like businesses, information security, bio-information and knowledge management [3], [4], [5], [6], [7] and [8]. Several context-aware systems have been developed using Semantic Web technologies [9] such as ontologies, Resource Description Framework (RDF) [10] and Web Ontology Language (OWL) [11]. The semantic web technologies are not only used for World Wide Web (WWW) but also for other information retrieval systems and even for personal devices as suggested in some research directions presented in [12] and then the idea was enhanced by integrating semantic search support in [13]. RDF is a standard model for data interchange between applications and is widely used to share and communicate knowledge. It also offers common properties and syntax to describe data and information. Extensible Markup Language (XML) only addresses the document structure but RDF provides a data model which can be extended for addressing ontology representation and relevant techniques. The RDF does need translation as domain model can be presented to define objects and relations. RDF is also capable to exchange the knowledge between different meta-data languages [14].

However, one of the major limitations of RDF is that it cannot define the cardinality constraints. Several ontology languages have been proposed by research community which includes Simple HTML Ontology Extensions (SHOE) [15] and OIL [16]. OWL was originally designed to be used by such applications which need to process the information contents and representing machine-interpretable contents on the web. Compared to RDF, OWL adds more vocabulary with a formal semantics and it allows rules which are more expressive. The main advantage of OWL over the RDF is that its ability to define cardinality constraints to define ontologies. OWL itself is an evolution of DAML + OIL [17] and it is divided into three sub-languages; OWL-Lite, which provides hierarchy of classification and constraints; OWL-DL have maximum expressiveness with computational completeness and OWL Full, which has maximum expressiveness without computational guarantee.

The ontology alignment systems make use of such ontological information to match entities from different ontologies. This paper thoroughly investigates and discusses the types of heterogeneities and techniques to utilize such
information for ontology matching purposes. The accuracy of the alignments produced by any system not only depends on the similarity measures but the aggregation technique also plays an important role.

The rest of the paper is structured as follows. Section II presents and explains the ontology alignment process and fundamental stages. Section III gives details about the importance of similarity aggregation techniques and its role in the accuracy of final alignments and finally, Section IV concludes the paper, followed by the references.

II. ONTOLOGY ALIGNMENT PROCESS

A. Ontology Heterogeneity

Ontology heterogeneities have been categorized in many aspects in literature and analyzed in different research studies [18],[19],[20] and [21]. However, there are two most important and common types of heterogeneities, semantic and terminological. Semantic heterogeneity; which occurs due to various reasons like using different axioms or due to disparity in modeling the same concept in different ontologies for the same domain. For example, the object-property “address” might has been used for the concept namely “organization” in one ontology and for “Publisher” in the second one.

Terminological heterogeneity; which emerges by using synonyms for the same entity in different ontologies. In the Figure 1, for example, the entity named as “Publisher” in one ontology which may have a different name like “PublishedBy” in the second but both represent the same concept. The semantic heterogeneity has been one of the most challenging tasks in a matching process because it derives from the difference in design or scope of ontology domains in the process of knowledge presentation.

B. Ontology Matching

Ontology matching process is to find the semantic mapping between two ontologies. Entities of the different ontologies are compared to find correspondences between them, however, they do not necessarily have to be the same but they should have certain degree of semantic similarity. This degree of semantic similarity can be used as the alignment threshold in the ontology alignment process. It has been a challenging task to find the semantic similarity between the entities of two heterogeneous ontologies. For this purpose, some information should be available about the internal structure of entities in order to match them.

OWL is an emerging language to represent ontologies in the semantic web and is recommended by the World Wide Web (WWW). Its vocabulary is used to describe the semantics of ontology and can also be used to find some indications for matching entities during the ontology alignment process. In the Figure 2, a part of the OWL syntax is shown, which is used for the same fraction of ontology which is shown in the
Fig. 1. For example, \texttt{owl:Class rdf:ID="Institution"} is used to
define a class named as Institution. Similarly, the syntax
\texttt{rdfs:subClassOf} defines a class which is a sub-class of another
defined class in other ontology. The \texttt{owl:ObjectProperty} and
\texttt{owl:DatatypeProperty} are used to define the object and data
properties. The properties can also have sub-properties which
are define by the syntax \texttt{rdfs:subPropertyOf}. The \texttt{rdfs:domain}
and \texttt{rdfs:range} syntax are used to classify the range and
domain of properties, showing that a property is associated to
which classes and what type of values a property may have.

In the Fig. 2, the syntax \texttt{owl:ObjectProperty rdf:ID="school"}
indicates the object-property labelled as
“school” while syntax \texttt{"<rdfs:range
rdf:resource="#School"/>"} shows that the property is
associated with the class named as “School”
this kind of
information greatly helps in defining the internal structure of
an ontology. There are a large number of matchers which are
used to find terminological heterogeneity.

These types of matchers like string-based and linguistic-
based, do not take into account the structural position of the
entity and operates on element level while comparing two
different entities from different ontologies. Such matchers are mostly
used in schema based matching systems. For example, the
“Publisher” and “PublishedBy” can be compared by using
string based matchers to find the similarity. External
resources are always helpful in finding matches where some
background knowledge is required about the entity names.

WordNet is an example of the widely used external
resource and many ontology alignment systems have exploited its
capability in different ways. For example, several mapping
systems have translated the entity labels to their respective
WordNet senses and then drawn the mapping from there [22],
[23], [24], while J. kwan et al. [25] exhaustively used the
relationships of synsets to measure the lexical similarity
between the entities. LOM [26] is another example of
alignment tool which make use of lexicon-based matching.

C. Ontology Alignment

The Ontology alignment process greatly varies and it
depends on the techniques or algorithm used in the alignment
system. The process may be varying in degree of mapping
automation, the utilization of structural and lexical similarities
and the degree of matching of such similarities. Mappings
may be completed in one of the three modes, which includes
manual, semi-automatic and automatic. In manual mapping,
the user does the mapping by hand while in semi-automatic;
the system suggests some mappings to the user for rejection or
approval. Using automatic mapping, the system does all the
process automatically without user’s involvement. The manual
mapping is the most time consuming but at the same time it
gives more accurate matching results compared to the other
two modes. The time and accuracy tradeoffs decision is made
according to the application and its usage.

Alignment systems may also be different in the use of
external resources in their matching processes such as web
resources, external ontologies, dictionaries or lexical databases
like WordNet\footnote{http://wordnet.princeton.edu/} etc. Some of these systems use learning
methods to improve mapping by using previous mapping
results. Figure 3 shows a typical example of mapping two
together ontologies namely “Publisher” in source ontology and
“PublishedBy” in the target ontology. Their structural
similarity is exactly equal in terms of super classes while the
string based similarity will not be equal by using any of the
widely used string based matching techniques.

Semantically, the entities supposed to be matched by an
alignment system, as it is suggested by the snippet of two
ontologies given in the Figure 3; but, it totally depends on the
algorithm used in the alignment system. Once the alignments
are produced by alignment systems then these can be used in
many ways for semantic interoperability between applications
on the web or in other information retrieval systems for
example [27] and [28], where the alignments are used for file
retrieval.
Fig. 4. Comparison of super and sub classes of entities from different ontologies

Similarly, as shown in the Figure 5, if an entity J has a super class G, and sub classes W, X and Y in an ontology O, and entity K has super classes E and F, and sub classes W, X and Y in ontology O’, up to some extent it is more likely that J and K represent the same concepts in O and O’, respectively. The structural similarity of entities J and K have 50% of similarities in terms of super and sub classes in ontologies O and O’.

Fig. 5. Comparison of sub classes of entities from different ontologies

Similarly, as shown in figure 6, entities J and K have similar super classes i.e. A and B, but entity J have sub classes U and V in ontology O, while entity K have sub classes X and Y in ontology O’. This, again, suggests some likeness that J and K represent the same concepts in O and O’, respectively. The structural similarity of entities J and K in the Figure 6 have 50% of similarities in terms of super and sub classes in the ontologies O and O’. Furthermore, sibling classes can also be compared between the entities from two different ontologies.

Fig. 6. Comparison of sub classes of entities from different ontologies

III. SIMILARITY AGGREGATION

The fundamental similarity measures which includes string based similarity, semantic based similarity and structure based similarity are the most widely used measures in state of the art alignment systems. However, the real issue arises when these similarity measures give different results for the same entity during the matching process. Different techniques have been used to aggregate the results of different similarity matchers. For example, some of the alignment systems have used the average of all values returned by all similarity measures. The PROMPT [29] system was developed to support various ontology mediation techniques and it suggests the classes and properties for aligning. It uses linguistic and structural similarity measures to map two entities. PROMPT performs all the tasks automatically and resolves any found conflict by suggesting new mappings to the users.

PROMPT is a very useful alignment system where users are involved in the aligning processes. LILY [30] also uses linguistic and structural similarity measures to align the entities from different ontologies. It applies a propagation strategy to generate further alignments and then uses classic image threshold selection algorithm for the best suitable threshold. Finally, it extracts the final results based on the most stable marriage strategy. The QOM [31] ontology alignment system employs the RDF triples as features and it applies heuristic method for mapping the entities. It computes the similarities by using various functions and heuristics but avoids the complete pair-wise evaluation of ontology trees. QOM uses sigmoid function to aggregate the results of various similarity measures. The response time of QOM alignment system is faster than PROMPT. The alignment systems presented in [32], [33], [34] [35] and [36] uses different mapping approaches and aggregation techniques.

Fig. 7. A generic alignment process which uses more than one matcher in the alignment process
The existing alignment systems used diverse types of aggregation techniques which includes probabilistic, weighted sum and weighted product. Some of the alignment systems have used Fuzzy aggregation and Rough sets as presented in [37].

For more accurate alignment results, the representative alignment systems have used the basic matchers because these matchers provide crucial information of an entity in a given ontology. However, it is the aggregation technique which decides either to map an entity or not. Figure 7 shows a generic diagram of alignment system which uses more than matchers and then aggregates the results of all matchers.

IV. CONCLUSION

Various types of ontological heterogeneities have been discussed and analyzed which can be considered while developing an ontology alignment system. The existing matchers which compare similarities between two entities from different ontologies, have also analyzed thoroughly. The importance of aggregation technique in alignment systems has also been discussed and it has been concluded that the aggregation techniques necessitate more research efforts in order to get more accurate results from alignment systems.

REFERENCES

Dr. Sadaqat Jan is working as Assistant Professor in Computer Software Engineering Department at University of Engineering and Technology, Mardan Campus, Pakistan. He received his PhD degree from Brunel University, UK and Master degree from NWFP University of Engineering and Technology Peshawar, Pakistan. His research interests include Grid Computing, Mobile Computing, Information retrieval, Distributed Systems, Semantic Web, Knowledge Engineering and Computer Networks. He is a member of IEEE.

Ibrar Ali Shah received his B.Sc. and M.Sc. degrees in Computer Systems Engineering from NWFP University of Engineering & Technology, Peshawar, Pakistan in 2004 and 2007 respectively. Currently, he is with Wireless Networks & Communications Centre, Brunel University, London UK working towards his PhD. His research mainly focuses on cooperative and non-cooperative behavior in Wireless Mesh Networks where he is working on routing and channel assignment problems by using game theoretic models for fairness, QoS and throughput optimization.

Dr. Imran Khan is working as Assistant Professor in Department of Telecommunication Engineering at University of Engineering and Technology, Mardan Campus, Pakistan since 2004. He received his PhD and Master degree from AIT, Thailand. He is student member of IEICE and IEEE. Mr. Khan’s research interests include performance analysis of wireless communications systems, OFDM, OFDMA, MIMO, BICM-ID based systems and cooperative networks.

Fahim Ullah Khan is working as Lecturer in Department of Computer Software Engineering at University of Engineering and Technology, Mardan Campus, Pakistan since 2004. He received his Master degree from UET Peshawar. His research interests include Semantic Web, NLP, Probabilistic approaches and uncertainty analysis.

Muhammad Usman is working as Assistant Professor in the Department of Computer Software Engineering at University of Engineering and Technology Mardan Campus, Pakistan since 2006. He received his Master's Degree in Computer Engineering from Center of Advanced Studies in Engineering (CASE), Pakistan. Mr. Usman's research interests include Embedded Systems, Distributed Systems, Reconfigurable Computing, Semantic Web, Service Oriented architecture and Web Services.