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Abstract— In the wireless network, whenever a mobile node 

moves from one cell to another - called handover or handoff, the 

call needs to be handed off to the new base station, and then 

network resources must be reallocated. Many mobility prediction 

schemes are proposed to perform resource reservations in 

advance so as to reduce the handover latency. Such approaches 

make use of knowledge patterns of location being mined from the 

mobility history of users to describe and predict the movement of 

mobile users. In addition to the location characteristic, the time-

of-day also plays a crucial role in modeling the movement and it 

has attracted several research interests recently. In this paper, we 

investigate simultaneously spatial and temporal attributes of data 

and apply a spatiotemporal data mining technique to discover 

frequent mobility patterns for predicting the next location of a 

mobile node. Our approach is to mine frequent mobility patterns 

with time and then to make use of them to construct temporal 

weighted mobility rules. This paper extends a mobility prediction 

algorithm by finding the best matched rules which are temporally 

closest to the query time. Our experimental results show that 

using the temporal attribute is necessary for improving the 

prediction accuracy. 

 
Index Terms— Mobility Prediction, Pattern Mining, Rule and 

Spatiotemporality 

 

I. INTRODUCTION 

N next generation wireless networks, one of the most serious 

challenges is how to achieve continuous connection during 

mobile user movement among cells which is allowed due to 

handover procedure. Whenever a mobile node moves from one 

cell to another, the call needs to be handed off to the new base 

station, and network resources must be reallocated. During a 

handover, although the connection is still alive, a mobile node 

can not send or receive any packets thus the packet loss may 

occur as well [1]. The high delay of handover procedure is a 

limitation to achieve a seamless handover with the meaning 

that the user is unaware of such status. Hence, the handover 

latency needs to be reduced as much as possible for a seamless 

mobility. In handover procedure, resource allocation takes a  
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lot of time and becomes the main factor contributing to the 

handover latency. One of the most effective approach to 

reduce the delay in resource allocation is to predict the next 

location of the mobile node. Mobility prediction detects the 

identity of the future cell for resources reservation prior to the 

actual handover [2] and it has attracted several research 

interests [2], [3], [4], [5]. 

The fact that behavior of mobile users often follows a 

sequence of regular movement locations has the important 

meaning. For example, in a university, lecturers often move to 

classrooms, laboratories, library, etc whereas departmental 

staffs often travel around the administrative offices. Therefore, 

it is possible to predict the next location of a mobile user based 

on his own movement history. According to [6], [7], [8], [9], 

[10], data mining has been a useful approach to mobility 

prediction based on mobility history. In fact, the mobility 

history hide useful knowledge patterns that describe typical 

behavior of mobile nodes. These knowledge patterns, which 

are represented in the form of mobility rules, can be used to 

describe and to predict the movement of mobile nodes. 

However, the current studies on mobility prediction are not 

satisfactory because of lack of investigating simultaneously 

spatial and temporal attributes of data. In the context of 

wireless network, the spatial attributes of a mobile node are 

changing over time, therefore time constraints between 

locations need to be considered in predicting the mobility. 

In this paper, we investigate the time-of-day factor and the 

importance of the time when a mobile user moves to the 

location daily. For instance, the movement of lecturers 

depends on the schedule of classes. It means that he will move 

to the classrooms at the times depending on his own teaching 

schedule. Our approach is to consider simultaneously time and 

space factors based on spatio-temporal data mining techniques. 

Moreover, in order to overcome the problem of long 

processing time and computational expensiveness in data 

mining techniques, we propose that just the prediction phase is 

performed in an online manner whereas the frequent mobility 

patterns and mobility rules are discovered periodically in 

offline. Researching efficient data mining techniques is not the 

purpose of this work, so we apply the most popular Apriori 

technique. However, any data mining techniques could be used 

with our proposed approach. 
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As another result of this research, the aim of mining 

frequent mobility patterns is generating frequent mobility rules 

which are near to user's current movement for an accurate 

prediction. It means that the rules which are extracted from the 

recent mobility patterns should be more important than the 

ones extracted from the older patterns. To reach this goal, each 

generated rule is assigned a weighted value based on temporal 

attribute. Our experimental results show that using the 

temporal attribute is necessary for improving the prediction 

accuracy. 

The rest of this paper is constructed as follows. Section 2 

describes the mobility model in wireless network. Section 3 

formalizes mobility in wireless network with combining space 

and time. Section 4 proposes a mining algorithm to discover 

spatiotemporal mobility patterns. Section 5 is mobility 

prediction based on temporal weighted rules. Section 6 

presents our experiments and evaluation on many different 

parameters. Finally, Section 7 draws concluding remarks and 

further work. 

II. MODELING MOBILITY IN WIRELESS NETWORK 

A. Typical Wireless Network Architecture 

This subsection is an overview of a typical wireless 

network architecture [4], [11]. In wireless network, the radio 

coverage region is partitioned into geographical areas, called 

location areas (LAs). Every LA consists of a group of cells (1, 

2 or more cells). Each cell is served by a base station (BS) that 

assigns radio frequencies, or channels, to each mobile node 

(MN) within the cell. The BSs regularly broadcast the 

identifiers of their cells and thus the MNs will know in which 

cell they are now through listening to the broadcast channel. 

All neighboring cells in a LA are managed by a base station 

controller (BSC) which is used to control all the BSs in the LA 

for performing their jobs and a mobile switch service center 

(MSC) which maintains a visitor location register (VLR). The 

 VLR records information about the MNs currently in the 

cells served by the MSC. Specially, the wireless network 

architecture also has a database which records the movements 

of each MN from its current cell to another cell. This database 

is called home location register (HLR). Therefore, in this 

paper it is possible to get the movement history of a MN from 

the log data stored in HLR. Fig. 1 shows a typical wireless 

network architecture. 

In this paper, it is assumed that the radio coverage region is 

represented by a hexagonal shaped network (shown as Figure 

2). Each hexagon is a cell which is served by a BS in the 

communication space. The mobile nodes can travel around the 

coverage region. In order to illustrate the mobility model of 

mobile nodes in wireless network, we use an unweighted 

directed graph G = (V, E), where the vertex-set V is the set of 

cells in the coverage region and the edge-set E represent the 

adjacence between pairs of cells. That means, if two cells, say 

A and B, are neighboring cells in the coverage region then G 

has a directed and unweighted edge from A to B and also from 

 
 

  

B to A. These bidirected edges illustrate the fact that a mobile 

node may move from A to B or B to A directly and further may 

travel around the coverage region corresponding graph G 

which is called bidirected graph. The example network shown 

in Figure 2 can be modeled by the vertex-set V = {0, 1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, 11} and the edge-set E = {(0, 1), (0, 2), (1, 0), 

(1, 2), (1, 9), (2, 0), (2, 1), (2, 3), (2, 8), (2, 9), ..., (11, 6), (11, 

7), (11, 10)}. 

B. Representing Mobility Profiles with Timestamps 

Behavior of mobile users can be characterized in many 

different ways [8]. In this work, two characteristics which are 

used to define mobility behaviors are location and time-of-day. 

The following is some discussion of the motivation for using 

these characteristics. 

The location factor indicates that the movement of mobile 

users often follow a sequence of locations every day. For 

example, in a campus network, lecturers often move to 

classrooms, laboratories, library, etc whereas departmental 

staffs often travel around the administrative offices. Therefore, 

it is possible to predict the next location of a mobile user based 

on his own location history. 

The time-of-day factor identifies the importance of the time 

when the mobile user moves to the location. The mobility 

behaviors changes as a function of time. For example, the 

movement of lecturers depends on the schedule of classes. 

That means, he will move to the classrooms at the times 

depending on his own teaching schedule. In this work, we  

 
 

Fig. 1.  A typical wireless network architecture 

  

 
 

Fig. 2.  An example coverage region (a) and the corresponding graph G (b) 
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analyze the personal mobility patterns of lecturers in a campus 

wireless network. The movement of each lecturer depends on 

his own teaching schedule. Therefore, it is possible to set the 

time interval every three teaching periods. A teaching periods 

is 45 minutes so the time interval is 135 minutes. According to 

our work, the predefined timestamps are illustrated in Table I. 

 

Table II is an example log file of mobility history which 

records the movements of a lecturer arround the coverage 

region graph G (See Fig. 2). 

III. FORMALIZING MOBILITY OF WIRELESS 

NETWORK 

In this subsection, we give the formal definitions to model 

mobility patterns and rules. As discussed in Section II, the 

mobile node can travel around the coverage region 

corresponding graph G. Let c be the ID number of the cell to 

which the mobile node connected at the timestamp t, we define 

a point as follows:  

Definition 1. Let C and T be two sets of ID cells and 

timestamps, respectively. The ordered pairs p = (c, t), in 

which c ∈ C and t ∈ T, is called a point. Denote P to be the 

set of all points P = C × T = {(c, t) | c ∈ C and  t ∈ T}. 

Two point pi = (ci, ti) and pj = (cj, tj) are said to be 

equivalent if and only if ci = cj and ti = tj. Point pi = (ci, ti) is 

defined to be earlier than point pj = (cj, tj) if and only if ti < tj, 

and it is denoted as (ci, ti) < (cj, tj) or pi < pj. 

Definition 2. The trajectory of the mobile node is defined as 

a finite sequence of points <p1, p2,…, pk> in C × T  space, 

where point pj = (cj, tj) for 1 ≤  j ≤ k. A sequence composed of 

k elements is denoted as a k-pattern. 

Note that the value of each timestamp tj is not unique in a 

trajectory, i.e. tj may be equal to ti if they are timestamps of 

two consecutive points of a trajectory. For example <(c1, t1), 

(c2, t2), (c3, t2), (c4, t4)> is a trajectory. The ascending order of 

points of trajectory is sorted by using t as the key. 

Definition 3. A mobility pattern B = <b1, b2, …, bm> is a 

sub-pattern of another mobility pattern A = <a1, a2, …, an>, 

where ai and bj are points, written as B  ⊂ A, if and only if 
there exists integers 1 ≤  i1 < … < im ≤ n such that bk = aik, for 

all k, where 1 ≤ k ≤ m. And then, A is called the super-pattern 

of B. 

For example, given A = <(c4, t2), (c5, t3), (c6, t4), (c8, t5)> 

and B = <(c5, t3), (c8, t5)>. Then B  is a sub-pattern of A  and 

conversely, A is super-pattern of B. 

Definition 4. ([12]) Let D = {S1, S2, …, SN} be a transaction 

database which contains N sequential mobility patterns. The 

support  of pattern S is defined as  

{ }
N

NiandSSS
Ssupport

ii ≤≤⊂
=

1  |
)(  (1) 

Definition 5. Given a minimum support threshold, suppmin, 

a sequential mobility pattern S is defined as a frequent 

mobility pattern if and only if S has support value satisfying: 

support(S) ≥ suppmin 

Definition 6. A mobility rule has the form R: A → B, in 

which A and B are two frequent mobility patterns and A ∩ B 

=∅. Then, A and B  are called the head and the tail of the 

rule, respectively. 

Since the mobility rule R: A → B is generated from the 

frequent mobility pattern A ∪ B, the support of the rule is the 

support of the pattern A ∪ B, that is: 

support(R)=support(A ∪ B) 

Definition 7. ([4]) Given a rule R: A → B, its confidence 

value is determined by the formula: 

100
)(

)
)( ×

∪
=

Asupport

Bsupport(A
Rconfidence  (2) 

Problem Statement: Given a bidirected graph G, a log file 

H of a node mobility history, a maximal time gap, gapmax, a set 

T of predefined timestamps, a minimum support threshold 

suppmin, and a minimum confidence threshold confmin. The 

problem of mobility prediction in wireless networks based on 

spatiotemporal data mining is composed of two phases: 

(i) The first phase is to discover all frequent mobility patterns 

in transactional database satisfying suppmin from the 

generated transactional database of a log file of a node 

mobility history.  

(ii) The second phase is to generate all mobility rules using 

the frequent mobility patterns which are mined in the 

previous phase. The mobility rules which have confidence 

values higher than the predefined threshold value confmin 

TABLE I 

PREDEFINED TIMESTAMPS 

Timestamps Time Interval Timestamps Time Interval 

t1 0:00 - 2:14 t7 13:00 - 15:44 

t2 2:15 - 4:29 t8 15:45 - 17:59 

t3 4:30 - 6:44 t9 18:00 - 20:14 

t4 6:45 - 8:59 t10 20:15 - 22:29 

t5 9:00 - 11:14 t11 22:30 - 23:59 

t6 11:15 - 13:29   

 

TABLE II 

A LOG FILE OF NODE MOBILITY HISTORY 

Time Location Time Location 

2011/7/19/6/40 0 2011/7/21/16/1

0 

4 

2011/7/19/6/50 2 2011/7/21/18/0

0 

7 

2011/7/19/11/25 8 2011/7/21/19/3

0 

6 

2011/7/19/13/30 3 2011/7/22/6/30 9 

2011/7/19/15/45 4 2011/7/22/7/00 2 

2011/7/19/18/00 7 2011/7/22/11/3

0 

8 

2011/7/20/6/45 2 2011/7/22/16/4

0 

4 

2011/7/20/9/00 3 2011/7/22/18/0

0 

5 

2011/7/20/11/30 8 2011/7/22/18/3

0 

7 

2011/7/20/15/50 4 2011/7/23/6/55 2 

2011/7/20/18/00 5 2011/7/23/11/4

0 

8 

2011/7/20/19/10 7 2011/7/23/15/4

0 

4 

2011/7/21/6/58 2 2011/7/23/18/1

0 

5 

2011/7/21/11/30 8 2011/7/23/18/4

0 

7 

2011/7/21/13/30 3 2011/7/23/19/2

0 

6 
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are used to predict the next cells of the given mobile node 

in the last part of this study. 

IV. DISCOVERING SPATIO-TEMPORAL MOBILITY 

PATTERNS 

A. Transactional Database 

For discovering frequent mobility patterns from the mobility 

history, we extract all mobility sequences using log file of 

node mobility history. A set of ordered mobility sequences is 

called a transactional database. In order to overcome the 

problem of data missing, loss of connection [5] [13], we 

introduce the time constraints between locations of a node to 

make significant mobility sequences (valid transactions). Time 

constraints restrict the time gap between two locations in a 

transaction. That means, only when the time between two 

locations stays within the maximal time gap, called gapmax, can 

a mobility sequence be produced. Let tj and tj+1 denote the 

occurrence time point of consecutive movements then tj+1 - tj ≤ 

gapmax. 

For example, if the gapmax is 8 hours, then the transactional 

database extracted from the log file of mobility history in 

Table II is presented in Table III. In this example, the time gap 

between the sixth and the seventh location exceeds the gapmax 

of 8 hours, thus a new transaction is generated. The result 

shows that using temporal attribute to generate transactional 

database allows a more flexible handling of the transactions. 

Notice that the time values of the temporal attribute in 

transactional database are transformed into corresponding 

Predefined Timestamps using the Time Intervals (See Table I). 

The following subsections present an algorithm, which is 

the modified version of the Apriori technique [9] [14], to 

discover all frequent mobility patterns from the transactional 

database D. For presentation convenience, we assume that the 

bidirected graph G has N vertices and the maximal timestamp 

is T. 

B. Discovering Frequent Mobility 1-patterns 

First, all frequent mobility 1-patterns are extracted from the 

database D by the following procedure. To discover frequent 

1-patterns, for each cell ID ci for 1 ≤ i ≤ N, we scan the 

transactional database D to find all points (ci, tj) for 1 ≤  j ≤  T. 

Each point (ci, tj) is a 1-pattern. Then their support values are 

calculated by using (1). All 1-patterns which have support 

values higher than a predefined minimum support threshold 

(suppmin) are selected and called frequent mobility 1-patterns 

as Definition 5. 

 

Let L1 be a set of frequent mobility 1-patterns  

( ) ( )( ){ }Tj1  Ni  supptcsupporttcL minjiji ≤≤≤≤≥= and1for,|,1

   

Example 1: Let T = 11 (See predefined timestamps in Table 

I), suppmin = 2, transactional database is in Table III and 

bidirected graph is in Figure 2, then L1 is in Table IV. Note 

that the support values of 1-patterns <(0, t3)>, <(3, t5)>, <(4, 

t7)> and <(9, t3)> are less than suppmin so they are discarded 

and called outliers (See C1 in Table IV). 

C. Discovering Frequent Mobility k-patterns for k ≥ 2 

For k ≥ 2, candidate k-patterns are discovered as follows. 

Given a frequent (k-1)-pattern F=<(c1, t1), (c2, t2), …, (ck-1, tk-1) 

>. Let V(ck-1) be a set of cells which are neighbors of ck-1 in G 

V(ck-1)={v| v is a neighbor of ck-1} 

For each v ∈ V(ck-1), generating all points (v, tk) satisfing 1 

≤ tk ≤ T,  and then <(v, tk)> is a frequent 1-pattern and tk ≥ tk-1. 

Let 

P(ck-1)={p=(v, tk)| <(v, tk)> ∈ L1 and tk ≥ tk-1} 

For each p ∈  P(ck-1), a candidate k-pattern C is generated 

by attaching p=(v, tk) to the end of F: 

TABLE III 

AN EXAMPLE TRANSACTIONAL DATABASE D 

Transaction ID Mobility patterns 

1 <(0, t3), (2, t4), (8, t6), (3, t7), (4, t8), (7, t9)> 

2 <(2, t4), (3, t5), (8, t6), (4, t8), (5, t9), (7, t9)> 

3 <(2, t4), (8, t6), (3, t7), (4, t8), (7, t9), (6, t9)> 

4 <(9, t3), (2, t4), (8, t6), (4, t8), (5, t9), (7, t9)> 

5 <(2, t4), (8, t6), (4, t7), (5, t9), (7, t9), (6, t9)> 

 

TABLE IV 

MOBILITY 1-PATTERNS AND FREQUENT MOBILITY 1-PATTERNS 

C1  L1 

Candidates 1-patterns Support  Frequent 1-patterns Support 

<(0, t3)> 1  <(2, t4)> 5 

<(2, t4)> 5  <(3, t7)> 2 

<(3, t5)> 1  <(4, t8)> 4 

<(3, t7)> 2  <(5, t9)> 3 

<(4, t7)> 1  <(6, t9)> 2 

<(4, t8)> 4  <(7, t9)> 5 

<(5, t9)> 3  <(8, t6)> 5 

<(6, t9)> 2    

<(7, t9)> 5    

<(8, t6)> 5    

<(9, t3)> 1    

 

TABLE V 

MOBILITY 2-PATTERNS AND FREQUENT MOBILITY 2-PATTERNS 

C2  L2 

Candidates 2-patterns Support  Frequent 2-patterns Support 

<(2, t4), (3, t7)> 2  <(2, t4), (3, t7)> 2 

<(2, t4), (8, t6)> 5  <(2, t4), (8, t6)> 5 

<(3, t7), (4, t8)> 2  <(3, t7), (4, t8)> 2 

<(4, t8), (5, t9)> 2  <(4, t8), (5, t9)> 2 

<(4, t8), (7, t9)> 4  <(4, t8), (7, t9)> 4 

<(5, t9), (6, t9)> 1  <(5, t9), (7, t9)> 3 

<(5, t9), (7, t9)> 3  <(7, t9), (6, t9)> 2 

<(6, t9), (5, t9)> 0  <(8, t6), (3, t7)> 2 

<(6, t9), (7, t9)> 0  <(8, t6), (4, t8)> 4 

<(7, t9), (5, t9)> 0  <(8, t6), (7, t9)> 5 

<(7, t9), (6, t9)> 2    

<(8, t6), (3, t7)> 2    

<(8, t6), (4, t8)> 4    

<(8, t6), (7, t9)> 5    
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C=<(c1, t1), (c2, t2), …, (ck-1, tk-1), (v, tk)> 

Then adding C to the set of candidates k-pattern: 

Ck=Ck  ∪ C 

This procedure is repeated for all the frequent (k-1)-

patterns in Lk-1. Then, all candidates k-pattern which have 

support values higher than suppmin are selected: 

Lk={C| C ∈ Ck and support (C) ≥ suppmin} 

 

 

Example 2 (continued): With k = 2, for frequent mobility 1-

pattern <(8, t6)>, we have: 

V(8) = {2, 3, 4, 7, 9, 10} 

P(8) = {(3, t7), (4, t8), (7, t9)} 

C2 = {<(8, t6), (3, t7)>, <(8, t6), (4, t8)>, <(8, t6), (7, t9)>} 

All candidates 2-patterns discovered from L1 in Table IV 

are represented by C2 in Table V. L2 in Table V shows all 

frequent mobility 2-patterns. 

The pseudo-code for discovering all the frequent mobility 

patterns is presented in Algorithm 1. 

V. MOBILITY PREDICTION BASED ON WEIGHTED 

RULES 

A. Mining Temporal Weighted Mobility Rules 

Let S be a frequent mobility pattern, all the possible 

mobility rules which can be generated from S are: A → (S-A) 

for all A ⊂ S and A ≠ ∅. For example, the frequent mobility 

pattern P= <(c1, t1), (c2, t2), …, (ck, tk)>, where k > 1, has all 

possible rules: 

R1: <(c1, t1)> → <(c2, t2), …, (ck, tk)> 

R2: <(c1, t1), (c2, t2)> → <(c3, t3), …, (ck, tk)> 

… 

R2: <(c1, t1), (c2, t2), …, (ck-1, tk-1)> → <(ck, tk)> 

Each rule has a confidence value which is computed by 

using (2). Then the rules, which have confidence values higher 

than a predefined confidence threshold confmin, are selected 

and called frequent mobility rules. 

Notice that, the aim of mining frequent mobility patterns is 

generating frequent mobility rules which are near to user's 

current movement for an accurate prediction. That means, the 

rules which are extracted from the recent mobility patterns 

should be more important than the ones extracted from the 

older patterns. For reaching this goal, each generated rule ri is 

assigned a weighted value wi based on temporal attribute. The 

weighted value of each rule are calculated as the following 

procedure. Let MinDate and MaxDate denote the first date and 

the last date in a log file of a node's mobility history, 

respectively. The date of the rule, which is determined through 

the time of the last point of the rule's tail, is called RuleDate. 

The RuleDate is nearer to the MaxDate, the weighted value is 

higher. Then, the weighted value is calculated by (3). 

According to the computation, all the rules which are extracted 

from a frequent mobility pattern have the same weighted value.  

Algorithm 1 Frequent Mobility Patterns Discovery Algorithm 

Input:  a transactional database, D 

 minimum support threshold, suppmin 
 coverage region directed graph, G 

Output: a set of frequent mobility patterns, L 

1. // Let Ck is a set of candidates k-patterns 

2. // Let Lk is a set of frequent mobility k-patterns 

3. L1  ← a set of frequent mobility 1-patterns 
4. k = 1 

5. repeat  

6. Ck+1 ← CandidateGeneration(Lk) 

7. for all mobility pattern F ∈ D do  

8. C ← {c|c ∈ Ck+1 and c ⊂ F} 

9. for all c ∈ C do 
10. c.count = c.count + 1; 

11. end for 

12. end for 

13. Lk+1 ← {c|c ∈ Ck+1 and c.count ≥ suppmin} 

14. L = L ∪ Lk+1 
15. k = k+1 

16. until Lk =  ∅ 
17. return L 

Algorithm 2 Candidates Generation Algorithm 

Input:  a set of frequent mobility k-patterns, Lk  

 coverage region directed graph, G 

Output: a set of candidates (k+1)-patterns, Ck+1 

1. for all frequent mobility k-pattern  

 Pk=<(c1, t1), (c2, t2), …, (ck, tk)> ∈ Lk do 

2. V(ck) ← {v|v is a neighbor of ck} 

3. for all vertex v ∈ V(ck) do 

4. P(ck) ← {p=(v, tk+1)| <(v, tk+1)> ∈ L1  
               and tk+1≥tk} 

5. for all p=(v, tk+1) ∈ P(ck) do 
6. C=<(c1, t1), (c2, t2), …, (ck, tk), (v, tk+1)> 

7. Ck+1= Ck+1 ∪ C 
8. end for 

9. end for 

10. end for 

11. return Ck+1 

Algorithm 3 Mobility Rules Generation Algorithm 

Input:  a set of frequent mobility patterns, L 

 minimum confidence threshold, confmin 
Output: a set of frequent mobility rules, Rules 

1. Rules ← ∅∅∅∅ 
2. for all frequent mobility pattern k-pattern 

 Pk=<(c1, t1), (c2, t2), …, (ck, tk)> ∈ Lk, k≥2 do 

3. Pl ← Pk 

4. repeat 

5. //A ← dropping the last point of Pl i.e. A is a (l-1) subpattern of Pl 

6. A ← <(c1, t1), (c2, t2), …, (cl-1, tl-1)> 
7. conf = support(Pk)/support(A) 

8. if conf ≥ confmin then 

9. //R ← (A → Pk-A) 

10. R ← {<(c1, t1), (c2, t2), …, (cl-1, tl-1)>  

   →<(cl, tl), …, (ck, tk)>} 
11. R.w = (RuleDate-MinDate)/(MaxDate-MinDate)×100 

12. Rules = Rules ∪ R 
13. else 
14. break 

15. end if 
16. l = l – 1 

17. until l>1 

18. end for 

19. return Rules 
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The improved mobility rules generation algorithm is 

presented in Algorithm 3. 

100)( ×
−

−
=

MinDateMaxDate

MinDateRuleDate
Rweight  (3) 

B. Mobility Prediction based on Temporal Constraints 

In reality, the mobility history hides useful knowledge 

patterns that describe typical behavior of mobile nodes. These 

knowledge patterns, which are represented in the form of 

mobility rules, can be used to describe and predict the 

movement of mobile nodes. In order to overcome the problem 

of long processing time and computational expensiveness in 

data mining techniques, we propose that just the prediction 

phase is performed in an online manner whereas the frequent 

mobility patterns and mobility rules are discovered 

periodically in offline. 

Moreover, this paper also reveals that if the timestamp of 

the last position of the rule's head (tj) is far away from the 

query time (ti-1), the prediction result may be inaccurate. The 

parameter Tdiff is included to incorporate temporal similarity to 

the query time. The proposed mobility prediction algorithm is 

presented in Algorithm 4. The algorithm extends the one of 

matching the current trajectory of a node to the rule’s head and 

finding the best matching using the time constraints. The best 

matched rule is temporally closest to the query time. 

VI. EXPERIMENTAL EVALUATION 

A. Synthetic Dataset Generation 

In the scope of this paper, for experiments we built a 

dataset generator which describes the personal mobility 

behavior of a lecturer in a campus wireless network. At first, 

approximately 1000 frequent mobility patterns (FMPs) are 

automatically generated by following procedure. Each frequent 

mobility pattern is a movement around the bidirected graph in 

Figure 2. For each cell of a FMP, we assigned a predefined 

timestamp ti satisfying ascending order of timestamps in the 

pattern. Next, we produce 5000 trajectories based on FMPs 

including two types. The first type consists of regular 

trajectories which follow a FMP and the second type consists 

of random trajectories which do not follow a FMP. Each 

regular trajectory is generated by insert some cells and 

corresponding timestamps between the consecutive cells of a 

FMP whereas each random trajectory is a random walk around 

the bidirected graph. Such a procedure of dataset generation is 

common in mobility prediction experiments [4] [7]. In this 

study, we generate 1000 random trajectories and 4000 regular 

trajectories. 

From the obtained dataset, we select two subsets of about 

2000 trajectories and 500 trajectories for training dataset and 

testing dataset respectively for each experiment. Each subset is 

built depending on the outlier ratio which is the ratio of the 

number of random trajectories to the total number of 

trajectories. In each experiment, the training set are utilized to 

discover all FMPs which are used to generate the weighted 

mobility rules. Meanwhile, the trajectories in the testing 

dataset are used in order to evaluate the prediction accuracy 

based on mobility rules which are extracted in previous phase. 

B. Experimental analysis 

Traditionally, prediction accuracy is evaluated using two 

measures: (1) recall measure that is the ratio of the number of 

correctly predicted cells to the total number of requests. That 

is, the recall measure counts the "no-prediction" case (i.e., the 

predictor returned "no-prediction") as an incorrect prediction 

(i.e., the predictor incorrectly identified the next location when 

compared to the actual location). Hence, the larger the recall 

measure is, the higher prediction accuracy is. And (2) 

precision measure that is the ratio of the number of correctly 

predicted cells to the total number of predictions made, i.e. the 

"no-prediction" case is ignored. The precision measure reflects 

the prediction accuracy in case of incomplete dataset. 

We have performed experiments on many parameters such 

as the outlier ratio, o, the minimum support threshold, suppmin 

and the minimum confidence threshold, confmin. In these 

experiments, we search for the best values for each parameter 

that make both recall and precision good. 

1) Effect of outlier ratio (o) 

In these experiments, we vary o from 0% to 100% on 10% 

incremental steps to find how significant the regular rate of 

movement is to prediction accuracy; o = 0% means purely 

regular movement, whereas o = 100% means purely random  

Algorithm 4 Mobility Prediction Algorithm 

Input:  Current trajectory of the user, P = <(c1, t1), (c2, t2),…, (ci-1, ti-1)> 

 Set of mobility rules, R 

 Maximum predictions made each time, m 

Output: Set of predicted cells, Pcells 

1. PCells = ∅ // Initially the set of predicted cells is empty 
2. k = 1 

3. for all rule r: <(a1,t’1), (a2,t’2) ..., (aj,t’j)>→ 

<(aj+1,t’j+1), ..., (at,t’t)> ∈ R do 

4. // check all the rules in R find the set of matching rules 

5. if <(a1,t’1), (a2,t’2) ..., (aj,t’j)> is contained by  

P = <(c1, t1), (c2, t2),…,(ci-1, ti-1)> and aj = ci-1 
6. Tdiff = 1/(|ti-1-t’j|+1) 

7. r.matchingscore = r.w+Tdiff 

8. r.score= r.confidence+r.support+r.matchingscore 

9. MatchingRules ←MatchingRules ∪ r 

10. //Add the (aj+1, r.score) tuple to the Tuples array 
11. TupleArray[k] = (aj+1, r.score) 

12. k = k+1 

13. end if 

14. end for 

15. // Now sort the Tuples array in descending order 
16. TupleArray ←sort(TupleArray) 

17. index = 0 

18. // Select the first m elements of the Tuples array 
19. repeat 

20. PCells←PCells ∪ TupleArray[index] 
21. index = index+1; 

22. until index >= m || index >= TupleArray.length) 

23. return Pcells 
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movement. First, we build the training dataset and the testing 

dataset based on the value of o. For example, o = 30%, we 

select 600 trajectories from 1000-trajectory random set and 

1400 trajectories from 4000-trajectory regular set for training 

dataset. Similarly, we select 150 trajectories from 1000-

trajectory random set and 350 trajectories from 4000-

trajectory regular set for testing dataset. Second, we run 

mining algorithm on the constructed 2000-trajectory training 

dataset with suppmin = 10% and confmin = 70% in order to 

discover all frequent mobility patterns which are used to 

generate weighted mobility rules. Last, the prediction 

algorithm is run on the constructed 500-trajectory testing 

dataset with respect to precision and recall measures. Figure 3 

shows that the recall decreases slightly while the precision is 

not reduced as outlier ratio increases from 0% to 60%. 

However, when the outlier ratio is larger than 60%, although 

the precision is still not affected, the recall is strong reduced. 

That is due to that the probability of having some no-

predictions becomes higher as o increases. 

By considering the experimental results, the 

unchangeability of the precision value implies that our mining 

algorithm is good because most random movements are 

ignored. It means that all the random trajectories are 

eliminated in patterns discovering phase and thus they are not 

used in prediction phase. 

 

2) Effect of minimum support threshold (suppmin) 

We used the dataset with o = 30% and fixed the minimum 

confidence threshold at 70%. Next, the value of minimum 

support threshold (suppmin) is varied to find how effective the 

suppmin value are to prediction accuracy. We vary suppmin from 

0.1 to 1 on 0.1 incremental steps. As expected, as the suppmin 

increases, both the precision and recall values decrease (See  

 

 

Fig. 4). In fact, when the suppmin increases, the number of 

frequent mobility patterns decreases leading to a decreasing in 

number of mined mobility rules; thus, the number of correct 

predictions decreases. 

The experiments have also showed that the increasing 

suppmin leads to a higher decrease rate in the recall values 

when compared to the decrease rate in the precision values. 

This is explained by the fact that a decrease in the number of 

extracted mobility rules leads to an increase in the number of 

no-prediction cases which are counted as incorrect predictions 

in the recall. 

3) Effect of minimum confidence threshold (confmin) 

This experiments also used the dataset with o = 30% and 

fixed the minimum support threshold at 10%. We vary confmin 

from 50% to 100% on 10% incremental steps. Figure 5 shows 

that the precision increases as confmin increases. This is due to 

the fact that the confmin value increases leading to the high 

quality of rules which are used for prediction. On the other 

hand, as the confmin value increases, the number of mined rules 

is reduced. As a result, the number of “no prediction” cases 

increases. This leads to a decrease in the recall values which is 

illustrated by Figure 5. In this experiment, the best value of 

confmin that make both recall and precision good is 70%. 

As another results of this experiment, we have compared 

the precision values obtained by our approach to the values 

obtained by UMP-Based [4] The values of our proposed 

model are always better than the values of UMP-Based 

approach. This indicates the effectiveness of the temporal 

attribute in mobility prediction. 

VII. CONCLUSION 

This paper presents a spatio-temporal-based mobility model 

in wireless networks. Based on this model, we develop 

algorithms for discovering frequent mobility patterns and 

mobility rules. The mined mobility rules will be utilized in 

predicting the next location of a mobile node. These proposed 

algorithms are implemented and experimented with various 

parameters. Using the dataset which describes the personal 

mobility behavior of a lecturer in a campus wireless network, 

our experimental results are two-fold. First, they show that 

using the temporal attribute is necessary for improving the 

prediction accuracy. Second, they show that the prediction 

accuracy is not affected by regular rate of movements; it 

means that our mining algorithms are suitable for mobility 

   
 (a) (b) 

 

Fig. 3.  Diagrams with varied outlier ratio 

      
 (a) (b) 

 

Fig. 4.  Diagrams with varied minimum support 

  

    
 (a) (b) 

 

Fig. 5.  Diagrams with varied minimum confidence 
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prediction in wireless networks. Developing group mobility 

based on clustering mobility patterns will be our future work. 
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