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Abstract─ An image compression coding technique involves 

transforming the image into another domain with Curvelet 

function and then quantizing the coefficients with modified Set 

Partitioning in Hierarchical Trees algorithm (SPIHT) has been 

presented in this paper. Curve functions are effective in 

representing functions that have discontinuities along straight 

lines. Normal Wavelet transforms fail to represent such 

functions effectively. SPIHT has been defined for normal wavelet 

decomposed images as an embedded quantization process. If the 

coefficients obtained from Curvelet transform of the image with 

more discontinuities along straight lines have to subject to 

quantization process with SPIHT, the existing structure of the 

SPIHT should be modified to suit with the output of the Fast 

Curvelet Transform (FCT). In this paper, a modified SPIHT 

algorithm for FCT coefficients has been proposed. The results 

obtained from the combination of FCT with modified SPIHT 

found much better than that obtained from the combination of 

Wavelet Transform with SPIHT. 

 
Index Terms– C2-Singularities, FCT, Fast Fourier Transform, 

SPIHT and Wavelet Transform  
 

I.    INTRODUCTION 

HE SPIHT Algorithm [12], [15] as given in the literature 
is a very useful tool for uniformly quantizing the 
coefficients obtained from the wavelet sub band 

decomposition of images. It forms lists using the 
approximation and Nth level decomposition detail coefficients 
and then checks them for significance against a threshold. 
Offspring are established using quad tree spatial orientation 
structures and then each significant coefficient is bit plane 
coded in the order of descending entropy. Roots are coded 
prior to the offspring. 

The problem in applying such an algorithm to the Curvelet 
decomposed image is that the form in which curvelet 
decomposes the image is different from that of wavelets. Also 
the wavelet decomposition of Radon Projections in the 
Curvelet analysis is not necessarily dyadic. The 
approximation & Nth level detail coefficients are arranged in  
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the transform matrix in a different order. So LIST formation 
should be changed. More ever the offspring’s are established 
in a different format.  

So modifications must be made in the normal SPIHT 
Algorithm to make it comply with the Curvelet Transform. 

In this paper, we present a new scheme which provides 
significant improvement in the quality of the compression 
image in terms of PSNR by Fast Discrete Curvelet transform 
[13], [14] with SPIHT modified the original algorithm in [15] 
and modeled the transformed coefficient according to its 
significance in a 2x2 adjacent offspring group.  

In the wavelet transform there is an inability to represent 
edge discontinuities along the curves.  Due  to  the  large  or  
several coefficients  are  used  to  reconstruct  edges  properly  
along  the curves.  For this reason,  it needs  a  transform  to  
handle  the  two dimensional  singularities  along  the  
sparsely  curve.  This is the reason behind the birth of 
Curvelet transform. Here the Curvelet basis elements have 
wavelet basis and the edge discontinuities and other 
singularities well than wavelet transform. .  

The outline of rest of the paper is organized as follows. 
Section II  discuss  the  Methodology  (theory  of  Curvelet  
Transform)    section  III  discuss the  SPIHT  coding  Section  
IV  discuss  the  Algorithm formulation and modified SPHIT 
image compression and section V discus the result analysis 
and comparisons with wavelet transform. 

II.    METHODOLOGY 

A. Image Compression  

A common characteristic of most images is that the 
neighboring pixels are correlated and therefore contain 
redundant information. The foremost task then is to find less 
correlated representation of the image. Two fundamental 
components of compression are redundancy and irrelevancy 
reduction. Redundancy reduction aims at removing 
duplication from the signal source (image/video). Irrelevancy 
reduction omits parts of the signal that will not be noticed by 
the signal receiver, namely the Human Visual System. In 
general, three types of redundancy can be identified:  
• Spatial Redundancy or correlation between neighboring 

pixel values.  
• Spectral Redundancy or correlation between       

different color planes or spectral bands.  
• Temporal Redundancy or correlation between adjacent 

frames in a sequence of images (in video applications).  
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The Compression techniques are classified as Loss/Lossless 
Compression & Predictive/Transform Compression [11].  

B. Lossless vs. Lossy Compression 

In lossless compression schemes, the reconstructed image, 
after compression, is numerically identical to the original 
image. However lossless compression can only achieve a 
modest amount of compression. An image reconstructed 
following lossy compression contains degradation relative to 
the original. Often this is because the compression scheme 
completely discards redundant information. However, lossy 
schemes are capable of achieving much higher compression. 
Under normal viewing conditions, no visible loss is perceived 
(visually lossless).  

C. Predictive vs. Transform Coding 

In predictive coding, information already sent or available 
is used to predict future values, and the difference is coded. 
Since this is done in the image or spatial domain, it is 
relatively simple to implement and is readily adapted to local 
image characteristics. Differential Pulse Code Modulation 
(DPCM) is one particular example of predictive coding. 
Transform coding, on the other hand, first transforms the 
image from its spatial domain representation to a different 
type of representation using some well-known transform and 
then codes the transformed values (coefficients).  

This method provides greater data compression compared 
to predictive methods, although at the expense of greater 
computation.    

D. Why Wavelets to Curvelets 

Many image processing tasks take advantage of sparse 
representations of image data where most information is 
packed into a small number of samples. Typically, these 
representations are achieved via invertible and non- redundant 
transforms. Currently, the most popular choices for this 
purpose are the wavelet transform. The success of wavelets is 
mainly due to the good performance for piecewise smooth 
functions in one dimension.  

The DWT suffers from the following problems: 
• 2-D line singularities- piecewise smooth signals 

resembling images have 1-Dimentional Singularities. 
That is, smooth regions are separated by edges, and 
while edges are discontinuous across, they are typically 
smooth curves 

• Lack of shift invariance- these results from the down 
sampling operation at each level. When the input signal 
is shifted slightly, the wavelet coefficients amplitude 
varies largely is explained in [8], [9].   

• Lack of directional selectivity- as the DWT filters are 
real and separable the DWT cannot distinguish between 
the opposing diagonal directions. This was explained in 
[9].    

The first problem of the  DWT an anisotropic geometric 
wavelet transform overcome by the pioneered a new system 
of representations named ridgelets which deal effectively with 
line singularities in 2-D using with arbitrary directional 

selectivity. Those are observed rare cases in real time 
applications. 

In order to analyze local line or curve singularities, consider 
a partition for the image, and then to apply the ridgelet 
transform to the obtained sub-images. This block ridgelet 
based transform, which is named curvelet transform. Apart 
from the blocking effects; however, the application of this is 
called first-generation curvelet transform. The second-
generation curvelet transform was proposed to handle image 
boundaries by mirror extension. Previous versions of the 
transform treated image boundaries by periodization. The 
second- generation curvelet transform has been shown to be a 
very efficient tool for many different applications in image 
processing, seismic data exploration, fluid mechanics, and 
solving PDEs (partial differential equations). In this survey, 
we will focus on this successful approach, and show its 
theoretical and numerical aspects as well as the different 
applications of curvelets.  

The second and third problems can be overcome by the 
CDWT (Continuous Discrete wavelet transform) which 
improves the shift invariance & directional selectivity than the 
separable DWT. 

E. Importance of Curvelets over Wavelets 

Curvelets will be superior over wavelets in following cases:  
i). This transform is optimally sparse representation of 

objects with edges.  
ii). This transform is optimal image reconstruction in 

severely ill-posed problems.  
iii). This transform is optimal sparse representation of wave 

propagators. 
The curvelets offer optimal sparseness for “curve-

punctuated smooth” images, where the image is smooth with 
the exception of discontinuities along C2 curves. Sparseness is 
measured by the rate of decay of the m-term approximation 
(reconstruction of the image using m number of coefficients) 
of the algorithm. Having a sparse representation, along with 
offering improved compression possibilities and also allows 
for improving denoising performance as additional sparseness 
increases the amount of smooth areas in the image. In [6] it 
was shown that orthogonal systems have optimal m-term 
approximations that decay in L2 with rate O (m-2

) (as a lower 
bound). On images with C2 boundaries, non-optimal systems 
have the rates: 
 
Fourier Approximation: 

║f � f�� ║
� L�  � O
m�

�  �                      (1) 
 
Wavelet Approximation: 

║f � f��║
� L�  � O
m�� �                     (2) 

 
Curvelet Approximation: 

║f � f�� ║
� L�  � O

logm�� 
m�� ��   (3) 

 
As seen from the m-term approximations, the Curvelet 

Transform offers the closest m-term approximation to the 
lower bound. Therefore, in images with a large number of C2 
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curves (i.e. an image with a great number of long edges), it 
would be advantageous to use the Curvelet Algorithm. 

F. Continuous Curvelet Transform 

The Continuous Curvelet Transform has gone through two 
major revisions. The first Continuous Curvelet Transform [1] 
(commonly referred to as the “Curvelet ’99” transform now) 
used a complex series of steps involving the ridgelet analysis 
of the radon transform of an image. Performance was 
exceedingly slow. The algorithm was modified in 2003 in [3]. 
The use of the Ridgelet Transform was discarded, thus 
reducing the amount of redundancy in the transform and 
increasing the speed considerably. In [8] this new method, an 
approach of curvelets as tight frames is taken. Using tight 
frames, an individual curvelet has frequency support in a 
parabolic-wedge area of the frequency domain. 

A sequence of curvelets  ��,�,� are tight frames if there exists 
some value for A such that: 
 

A║f║� L�  �  ∑ | f, γ!,",#$|�!,",#  % & f ' L�      (4) 
 
Where each curvelet in the space domain is defined as: 

γ!,",# �   2  �)
*      γ 
D! Rθ x � kδ�                     (5) 

 
(With Dj = Parabolic Scaling matrix, Rθ = Rotation matrix, kδ 

= translation parameter, γ = the “mother” curvelet Using the 
property of tight frames, the inverse of the curvelet transform 
is easily found as: 
 

f = ∑  f, γ!,",#$!,",#  γ!,",#                                     (6) 
 

In a heuristic argument is made that all curvelets fall into 
one of three categories. 

i). A curvelet whose length-wise support does not intersect 
a discontinuity. The curvelet coefficient magnitude will 
be zero. (Fig. 1.a) 

ii). A curvelet whose length-wise support intersects with a 
discontinuity, but not at its critical angle. The curvelet 
coefficient magnitude will be close to zero. (Fig. 1.b) 

iii). A curvelet whose length-wise support intersects with a 
discontinuity, and is tangent to that discontinuity. The 
curvelet coefficient magnitude will be much larger than 
zero. (Fig. 1.c) 

 
 

           
                     
                     (a)                                    (b)                                   (c) 
 

 
Fig.1. Curvelet Type A,   Curvelet Type B and Curvelet Type C 

 

 

 G. Discrete Curvelet Transform 

Discrete curvelet transform is implemented using the 
wrapping based fast discrete curvelet transform. Basically, 
multi resolution discrete curvelet transform in the spectral 
domain utilizes the advantages of fast Fourier transform 
(FFT). During FFT, both the image and the curvelet at a given 
scale and orientation are transformed into the Fourier domain. 
The convolution of the curvelet with the image in the spatial 
domain then becomes their product in the Fourier domain. At 
the end of this computation process, we obtain a set of 
curvelet coefficients by applying inverse FFT to the spectral 
product. This set contains curvelet coefficients in ascending 
order of the scales and orientations. There is a problem in 
applying inverse FFT on the obtained frequency spectrum. 
The frequency response of a curvelet is a trapezoidal wedge 
which needs to be wrapped into a rectangular support to 
perform the inverse Fourier transform. The wrapping of this 
trapezoidal wedge is done by periodically tiling the spectrum 
inside the wedge and then collecting the rectangular 
coefficient area in the origin. Through this periodic tiling, the 
rectangular region collects the wedge’s corresponding 
fragmented portions from the surrounding parallelograms. For 
this wedge wrapping process, this approach of curvelet 
transform is known as the ‘wrapping based curvelet 
transform’. 

H. Discrete Curvelet Transform Wrapping 

Using the theoretical basis in (where the continuous 
curvelet transform is created), two separate digital (or 
discrete) curvelet transform (DCT) algorithms is introduced in 
[4]. The first algorithm is the non equispaced FFT Transform 
[10], where the curvelet coefficients are found by irregularly 
sampling the Fourier coefficients of an image. The second 
algorithm is the Wrapping transform, using a series of 
translations and a wraparound technique. Both algorithms 
having the same output, but the Wrapping Algorithm gives 
both a more intuitive algorithm and faster computation time. 
Because of this, the Unequispaced FFT [18], [19], [20] method 
will be ignored in this paper with focus solely on the 
Wrapping DCT method. 
 
Wrapping DCT Algorithm: 

   1. Take FFT of the image 
   2. Divide FFT into collection of Digital Corona Tiles  
   3. for each corona tile  
       (a) Translate the tile to the origin (Fig. 4.) 
       (b) Wrap the parallelogram shaped support of the tile  
              around a rectangle centered at the origin 
       (c) Take the Inverse FFT of the wrapped support 
       (d) Add the curvelet array to the collection of curvelet  
             coefficients. 
 
Inverse Wrapping DCT Algorithm: 

    1.  for each curvelet coefficient array 
        (a) Take the FFT of the array. 
        (b) Unwrap the rectangular support to 
              the original orientation shape. 
        (c) Translate to the original position. 
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        (d) Store the translated array. 
   2. Add all the translated curvelet arrays. 
   3. Take the inverse FFT to reconstruct the image 
 

                    
 
                     (a)                                           (b)                                   (c)    
 
Fig. 2. (a) Digital Corona of the Frequency Domain, (b) Support of Wedge 
before Wrapping; and (c) Support of Wedge after Wrapping 
 

I. Fast Discrete Curvelet Transform Operation  

Fast Discrete Curvelet transform (FDCT) [5], [6], [7] gives 
different frequency components locally for analysis and 
synthesis of digital image in multi-resolution analysis. FDCT 
is multi-scale geometric transform, which is a multi-scale 
pyramid with many directions and positions at each length 
scale. FDCT is basically 2D anisotropic extension to classical 
wavelet transform that has main direction associated with it. 
Analogous to wavelet, FDCT can be translated and dilated. 
The dilation is given by a scale index that controls the 
frequency content of the curvelet with the indexed position 
and direction can be changed through a rotation. This rotation 
is indexed by an angular index. Curvelet satisfy anisotropic 
scaling relation, which is generally referred as parabolic 
scaling. This anisotropic scaling relation associated with 
curvelet is a key ingredient to the proof that curvelet provides 
sparse representation of the C2 function away from edges 
along piecewise smooth curves. FDCT is constructed by a 
radial window W and angular window. The radial window W 
is expressed as  
 

W0 J (w) =1
2!3�  � 
w� � 2!  � 
w�� , j 5 0     (7) 

 
Where, 2 is defined as the product of low-pass one 

dimensional window.  
The angular window V is defined as 

 
Vj (w) =V (2!/�

  w 2 /w1)                             (8) 
 

Where, W1 and W2 are low pass one dimensional 
windows. The Cartesian windowU0j,l(w) is constructed as 

 U0j,l (w)= Wj (w) Vj (Sθ w)                              (9) 
 

Where, Sθ is shear matrix, Sθ =9 1 2tan2 1>       
     

Shear matrix Sθ is used to maintain the symmetry around 
the origin and rotation by  ?@/2 radiance.  

The frequency domain definition of digital curvelet is,  
 

 φ!,".#BCDDEt1, t2F   =    UG EH�,H�FI e�H�πE#�H�3#�H�F   (10) 
 

Where φ!,".#, is a Cartesian window. The Discrete Curvelet 
transform is expressed as:  
 

cB
j, l, k� � ∑ fEt1, t2FMNH�,H�OP φ!,".#BCDDEt1, t2F  (11) 
 

Where, cB
j, l, k�    represents curvelet coefficients with j is 
scale parameter, l is orientation parameter and k is position 
parameter.  f [t1, t2]  is an input of Cartesian arrays. This 
transform is also invertible. The classical wavelet transform 
captures the image features only in vertical, horizontal and 
diagonal directions with isotropic scaling. Wavelets do well 
for point singularities and not for singularities along curves. 
Wavelets are not well adapted to edges because of its 
isotropic scaling. FDCT is applied to a rotated and up 
sampled high-resolution grid. The high- resolution grid is 
decomposed at three levels in curvelet domain. In order to 
interpolate the missing pixels their locations must be 
determined in each sub band. In curvelet domain missing 
pixels corresponds to missing coefficients of each sub band. 
The missing coefficients are interpolated at finest scale. 
Inverse curvelet transform reconstructs the original high-
resolution grid. 
 

    
 

Fig. 3. Image to Curvelet coefficients 
 

III.   SPIHT (SET PARTITIONING IN HIERARCHICAL 
TREES) 

SPIHT is an embedded coding technique. In embedded 
coding algorithms, encoding of the same signal  at  lower  bit  
rate  is  embedded  at  the  beginning  of  the  bit  stream  for  
the  target  bit  rate. Effectively, bits are ordered in 
importance. This type of coding is especially useful for 
progressive transmission using an embedded code; where an 
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encoder can terminate the encoding process at any point.  
SPIHT algorithm is based on following concepts [15], [16]:  

i).   Ordered bit plane progressive transmission.  
ii).  Set partitioning sorting algorithm.  
iii). Spatial orientation trees.  

SPIHT keeps three lists:  List of insignificant pixels (LIP), 
List of insignificant sets (LIS), and List of significant pixels 
(LSP).LIP stores insignificant pixels, LSP stores significant 
pixels and LIS stores insignificant sets. At the beginning, LSP 
is empty, LIP keeps all coefficients  in  the  lowest  sub  band,  
and  LIS  keeps  all  tree  roots  which  are    at  the  lowest  
sub band.  The SPIHT algorithm sends the binary 
representation of the integer value of Curvelet coefficients 
(bit-plane coder). [17]  also  present  simulations  that  show 
the  superiority  of  SPIHT coding over the traditional JPEG 
During  step  of  initialization,  initial  value  for  threshold  is 
determined  and  initializes  with  a  set  containing  all  the 
coefficients  in  lowest  subband  (LIP).  Moreover,  initially  
empty list set  in LSP and  LIS  contains  the  coordinates  of  
roots  of  all trees  that  are of  ¾  of  lowest  subband.  In  this  
paper  SPIHT  is modified  with  LIP  initialization  to  be  
inserted  in  the  hybrid coder.  The  LSP  and  LIS  lists  have  
not  been  modified,  LSP  is originally  empty  due  to  the  
approximation  subband  and  offspring of LIS. The 
approximation subband coefficients values have been not 
included in order to achieve a better detail subband encoding. 

Progressive selection of coefficients such that 
 

TR S  TUVW
�XY                                     (12) 

 
Where p= 0, 1, 2…...   P denotes the pass number 
 

c�Z[ �   2\"]^�  UVW  _ `Ta,)`b c          (13) 
 
Where cd,!   is the coefficient at position (i,j) in the image 

 
`cd,!` 5  2P , n � nM, nM � 1, nM � 2       (14) 

 
 

SP
U�� �  f1,    maxg`cd,!`h    5   TR, 0 other wise

i, j� ' U m  (15) 

 

Algorithm Steps: 

 
1) select partitions of pixels Um 
  
2) For each n = n0, n0-1, n0-2...  
 • If Sn (Um) = 0 (the set is insignificant) then  

disregard pixels in Um 
  

• If Sn (Um) = 1 (the set is significant) then use recursive 
algorithm to partition Um 

  
3) Test sets until all significant coefficients found  
4) The following sets of coordinates are used to present the 

new coding method:  
O (i, j): set of coordinates of all offspring of  

               node (i, j)  

D (i, j): set of coordinates of all descendants  
             of node (i, j)  

H (i, j): set of coordinates of all spatial  
             orientation tree roots (nodes in the  
              highest pyramid level)  

L (i, j): D (i, j) – O (i, j) (all descendents except 
             the offspring)  
5) Three Lists  

•  LIP - list of insignificant pixels  
• LIS - list of tree roots (i, j) of insignificant descendant 
sets D (i, j) (Type A) or insignificant descendant of 
offspring sets L (i, j) = D (i, j) - O (i, j) (Type B)  
• LSP - list of significant pixels  

6) Lists tested in order LIP, LIS, LSP for efficient   
embedded coding  

7) Initialization of Lists  
• LIP: co-ordinates of all tree roots wavelet example: co-
ordinates in coarsest scale subband  
• LIS: co-ordinates of all tree roots with nonempty 
descendent trees wavelet example: Co-ordinates in 
coarsest scale subband pointing to descendant trees  
• LSP: empty  

8) Sorting Pass  
9) Refinement Pass  

• Output nth bit of all LSP members found significant at 
thresholds greater than 2n  
• Two bit types in stream: significance test bits and 
refinement bits  

10) Quantization Step Update:  
• Decrement the value of n by 1 and go to sorting pass if n 
is not less than 0 

The SPIHT Algorithm is very useful tool for uniformly 
quantizing the coefficients obtained from the wavelet sub 
band decomposition of images .It forms lists using the 
approximation and Nth level decomposition detail coefficients 
and then checks them for significance against a threshold. 
Offspring are established using quad tree spatial orientation 
structures and then each significant coefficient is bit plane 
coded in the order of descending entropy. Roots are coded 
prior to the offspring. 

The problem in applying such an algorithm to the Curvelet 
decomposed image is that the form in which curvelet 
decomposes the image is different from that of wavelets. 

i). Also the wavelet decomposition of Radom Projections in 
the Curvelet analysis is not necessarily dyadic. 

ii). The approximation and nth level detail coefficients are 
arranged in the transform matrix in a different order. So 
LIST formation should be changed. 

iii). And moreover the offspring’s are established in a 
different format. 

IV. ALGORITHM FORMULATION & MODIFIED SPHIT 

In this section we described the following coding technique 
for images with straight singularities along with curves and 
edges. The proposed is very effective in overcoming the 
shortcomings of the wavelet transform based coding methods 
when applied to images with linear Curves. The technique is 
as follows: 
 



 
Fig. 4. Proposed Image Compression Techniques

 
i).  Represent the image data as intensity values of pixels in 

the spatial co-ordinates. 
ii).  Apply Curvelet Transform on the image matrix and get 

the Curvelet coefficients of the image. 
iii). Quantize the available coefficients using the 

Algorithm, specially modified for the Curvelet 
Transform. 

iv). Use any form of entropy coding on the bit stream 
available from the SPIHT encoder. 

 
Modified SPHIT: The following are the solutions proposed 

to address these problems in applying SPIHT to curvelet 
transformed image: 
i). The Curvelet Transform which uses dyadic Decomposition 

of Radon Projections to the maximum number of levels is 
chosen for the coding technique. 

ii). In Curvelet Transform we find that each column (Wavelet 
transformed Radon Projection) has one Approximation 
coefficient, one nth level detail coefficient, two (n
coefficients, four (n-2)th level coefficients and so on. Hence 
it can be seen that all approximation coefficients fall in the 
1st row of the CT image and all nth level detail coefficients 
fall in the 2nd row. 

 

 
Fig. 5. List Formations in Modified SPIHT Algorithm

 
So it is very clear that from Fig. 5 that the Modified SPIHT 

has different type of list contents against Normal SPIHT as 
described below: 

 In Normal SPIHT – LIP contains approximation 
coefficients with nth level detail coefficients. But, LIS will 
have nth level detail coefficients. 

 In Modified SPIHT – LIP contains 1st and 2
again approximation coefficients with n
coefficients. But, LIS will have 2nd row which is n
detail coefficients. 
iii). Every root has its offspring in the same column, which 

means that the spatial orientation trees are mapped 
considering each column as a 1-D vector individually. 
Every nth detail coefficients has two offspring in (n
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means that the spatial orientation trees are mapped 

D vector individually. 
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detail coefficients set lying in the corresponding position 
from the top, as its root is in the n
set.     
Hence as a generalization offspring can be mapped by the 

following formula: 
 

O (i, j) = {(2i, j), (2i+1, j)}                       (1
 
 

 
Fig. 6. Image Decomposition and Offspring dependencies using curvelet 

transform 
  

As a result each parent has two offspring in contrast to the 
four offspring for each parent in the norma
These are the important changes made in the SPIHT 
procedure to be used for Curvelets Rest of the procedure is 
identical to the one applied to wavelets including 
thresholding, refinement and decoding. The changes made in 
the encoding process must be considered in the decoding 
process and appropriately reflected in the inverse way for 
faithful reconstruction. 

V.    RESULTS AND COMPARISONS

During the process of said compression, the reconstructed 
image is subject to a wide variety of distortio
evaluations emphasizes on the visual image quality, which is 
too inconvenient, time consuming, and complex. The 
objective image quality metrics like 
Signal to Noise Ratio (PSNR), or Mean Squared Error (MSE) 
are thought to be the best for the image processing 
application. 

Compression ratio: It also known as compression power is 
a term used to quantify the reduction in image representation 
size produced by a image compression algorithm .The data 
compression ratio is analogous to the physical compression 
ratio used to measure physical compression of substances, and 
is defined in the same way, as the ratio between the 
uncompressed image size and the compressed image size:

Compression Ratio = Uncompressed image 

Size/Compressed image Size  

The MSE metric is most widely used for it is simple to 
calculate, having clear physical interpretation and 
mathematically convenient. MSE is computed by averaging 
the squared intensity difference of reconstructed image,
the original image, x.  Then from it the MSE is calculated as, 
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Hence as a generalization offspring can be mapped by the 

O (i, j) = {(2i, j), (2i+1, j)}                       (16) 
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As a result each parent has two offspring in contrast to the 
four offspring for each parent in the normal SPIHT encoding. 
These are the important changes made in the SPIHT 
procedure to be used for Curvelets Rest of the procedure is 
identical to the one applied to wavelets including 
thresholding, refinement and decoding. The changes made in 

ss must be considered in the decoding 
process and appropriately reflected in the inverse way for 

RESULTS AND COMPARISONS 

During the process of said compression, the reconstructed 
image is subject to a wide variety of distortion. Subjective 
evaluations emphasizes on the visual image quality, which is 
too inconvenient, time consuming, and complex. The 

like Compression ratio, Peak 
Signal to Noise Ratio (PSNR), or Mean Squared Error (MSE) 

to be the best for the image processing 

It also known as compression power is 
a term used to quantify the reduction in image representation 
size produced by a image compression algorithm .The data 

ogous to the physical compression 
ratio used to measure physical compression of substances, and 
is defined in the same way, as the ratio between the 
uncompressed image size and the compressed image size: 

Compression Ratio = Uncompressed image 

The MSE metric is most widely used for it is simple to 
calculate, having clear physical interpretation and 
mathematically convenient. MSE is computed by averaging 
the squared intensity difference of reconstructed image, xn and 

l image, x.  Then from it the MSE is calculated as,  
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MSE = 1/MN[y (i, j) ─ ŷ (i, j)] 2               

where x(i , j) is the original image, xo
approximated version (which is actually the decompressed 
image) and M,N are the dimensions of the images Where, 
MxN is the size of the image and assuming the grey scale 
image of 8 bits per pixel (bpp), then the PSNR is defined as,   

 
PSNR = 10 log10   [2552

 / MSE]              (1
  

 

     
      (a) Clock tower                  (b) Moon               

 

 Fig. 7. Test Images 

 

For testing the performance of the proposed image coding 
system, the following test images were taken t
Fig. 7 were subjected to Curvelet transform which uses 2
dyadic wavelet decomposition. Hence it provided means for 
SPIHT encoding. The standard parameters like MSE, PSNR 
and CR were calculated for various numbers of planes 
excluded during the SPIHT encoding. The results obtained are 
compared with the SPIHT encoded images after normal 2
wavelet decomposition up to the equal number of levels. The 
wavelet named ‘db1’ was used in both cases.                     

The results given in Table I clearly show the superiority of 
Curvelet Transforms over wavelet transforms with straight 
curves. Moreover the smooth distribution of the intensity 
levels Contributes to the compaction of most part of the 
image energy in the low frequency range, so that the 
compression becomes much easier and effective. 

 
 

TABLE I 
COMPARISON RESULTS OF CLOCK TOWER IMAGE

 
No. of bit 

planes 

excluded 

CR RMSE 

Proposed 

scheme 

Wave 

let 

 

Proposed 

scheme 

Wave 

let 

 

6 49.06 52.08 10.76 19.87 

5 24.07 26.00 9.29 18.97 

4 6.63 8.43 7.82 18.62 

3 1.89 3.69 6.57 17.35 

 
 

Statistics in Table II provides a clear ins
efficiency of the Curvelet transform in coding the Saturn 
image which has a curved edge. Even though the boundary is 
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 xo (i , j) is the 
approximated version (which is actually the decompressed 
image) and M,N are the dimensions of the images Where, 

nd assuming the grey scale 
image of 8 bits per pixel (bpp), then the PSNR is defined as,    

/ MSE]              (18) 

      
(a) Clock tower                  (b) Moon                

he performance of the proposed image coding 
system, the following test images were taken these images in 

o Curvelet transform which uses 2-D 
dyadic wavelet decomposition. Hence it provided means for 

ters like MSE, PSNR 
and CR were calculated for various numbers of planes 
excluded during the SPIHT encoding. The results obtained are 
compared with the SPIHT encoded images after normal 2-D 
wavelet decomposition up to the equal number of levels. The 

t named ‘db1’ was used in both cases.                      
The results given in Table I clearly show the superiority of 

Curvelet Transforms over wavelet transforms with straight 
curves. Moreover the smooth distribution of the intensity 

o the compaction of most part of the 
image energy in the low frequency range, so that the 
compression becomes much easier and effective.  

F CLOCK TOWER IMAGE 

PSNR 

Proposed 

scheme 

Wave 

let 

 

34.15 24.11 

34.35 24.57 

35.93 25.12 

35.14 25.39 

Statistics in Table II provides a clear insight in the 
efficiency of the Curvelet transform in coding the Saturn 
image which has a curved edge. Even though the boundary is 

curved, we can very well observe different shades of intensity 
along straight lines. This aspect has contributed to the success
of Curvelet over Wavelets. The tradeoff between 
Compression ratio and PSNR is very appreciable an
encourages the usage of Curvelet transforms for astronomical 
data like the Moon image.  

 
TABLE II 

 COMPARISON RESULTS O
 

 

 

 
Fig. 8. Comparison of wavelet and proposed       algorithm compression ratio 
with PSNR 

VI.   CONCLUSIONS

The proposed algorithm of fast Curvelet transform 
combined with Modified SPIHT scheme gave compression 
ratios as high as 90:1 with very good PSNR. The 
found to be comparable with conventional wavelet based 
compression which is more discontinuous with straight line 
singularity and hence this method 
Fast curvelet with modified SPHIT
complexity and the computational speed of the algorithm is 
very good than the wavelet based schemes. Experimental 
results clearly show that the proposed compression technique 
results in higher quality reconstructed images compared to 
that of other algorithms operating a
class of images where edges are dominant with minimum 
variation in compression ratio. Thus, we can conclude that 
FCT with modified SPIHT is to be 
algorithms in terms of visual and computational performance.
From the comparison result the better performance for PSNR 
is obtained from the Curvelet coder as compared with the 
Wavelet compression. It is about 10% to 20% improvement in 
PSNR had arrived from the above algorithm

No. of bit 

planes 

excluded 

CR RMSE

Proposed 

scheme 

Wave 

let 

 

Proposed 

scheme 

6 61.80 53.60 12.10 

5 57.37 43.89 12.53 

4 32.19 20.87 6.49 

3 3.64 7.54 6.12 
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curved, we can very well observe different shades of intensity 
along straight lines. This aspect has contributed to the success 
of Curvelet over Wavelets. The tradeoff between 
Compression ratio and PSNR is very appreciable and 

let transforms for astronomical 

 
COMPARISON RESULTS OF MOON IMAGE 

 

omparison of wavelet and proposed       algorithm compression ratio 

CONCLUSIONS 

The proposed algorithm of fast Curvelet transform 
combined with Modified SPIHT scheme gave compression 

0:1 with very good PSNR. The results are 
found to be comparable with conventional wavelet based 

more discontinuous with straight line 
singularity and hence this method further investigation. The 
Fast curvelet with modified SPHIT is low computational 

the computational speed of the algorithm is 
very good than the wavelet based schemes. Experimental 
results clearly show that the proposed compression technique 
results in higher quality reconstructed images compared to 
that of other algorithms operating at similar bit rates for the 
class of images where edges are dominant with minimum 

Thus, we can conclude that 
FCT with modified SPIHT is to be better compression 
algorithms in terms of visual and computational performance. 

om the comparison result the better performance for PSNR 
is obtained from the Curvelet coder as compared with the 
Wavelet compression. It is about 10% to 20% improvement in 

algorithm. 

RMSE PSNR 

Proposed 

 

Wave 

let 

 

Proposed 

scheme 

Wave 

let 

 

14.68 38.24 29.04 

14.37 36.98 29.40 

13.94 34.55 29.11 

13.60 31.14 26.62 
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