
International Journal of Computer Science and Telecommunications [Volume 3, Issue 2, February 2012] 65

Journal Homepage: www.ijcst.org

M. Prakash
1
, R.Saranya

2
, K. Rukmani Jothi

3
 and A. Vigneshwaran

4

Abstract— A computational Grid is a hardware and software

infrastructure that provides dependable, consistent, pervasive,

and inexpensive access to high-end computational capabilities.

Grids are emerging as a new computing paradigm for solving

grand challenge application in Science, Engineering and

Economics through sharing and collaboration of heterogeneous

resources. Scheduling is one of the research issues in grid. Grid

Scheduling is defined as the process of making scheduling

decisions among resources from different administrative domains.

The main problem in computational grid resource allocation is to

discover suitable resources and to schedule separate tasks of an

application on those resource in such a way to satisfy deadline

requirement of the job with minimum execution time and cost.

We propose a cuckoo optimization algorithm for optimal job

allocation of resources on each node. This system will allocate the

job optimally by considering the deadline requirement of the

users and also the minimal execution time.

Index Terms— Grid Computing, Scheduling, Cuckoo

Algorithm, Resource Discovery and Resource Selection

I. INTRODUCTION

HEN PCs were introduced in the 1970’s,they were

designed for personal use and were generally considered

standalone computers. Later, client server model were

introduced. In client server model, the client request server for

its requirement and server responds it. The drawback is if

server crashes, the entire process get collapsed. Then many

models like peer to peer model, distributed system were

introduced. In these entire models, the people will not utilize

their resources 24*7 hours. The new concept called grid

computing [1] were introduced which allow the people to use

the resources on demand. The people will be charged only for

time they are consuming the resources. The popularity of the

internet and the availability of powerful computers and high-

speed networks are changing the way we use computers today

[9]. These technical opportunities allow us to use distributed

1M.Prakash, Assistant Professor in Department of Computer Science and

Engineering, Rajalakshmi Engineering College, Chennai, India
2R.Saranya, final year B.E in Department of Computer Science and

Engineering, Rajalakshmi Engineering College, Chennai, India
3K.Rukmani Jothi, final year B.E in Department of Computer Science and

Engineering, Rajalakshmi Engineering College, Chennai, India
4A.Vigneswaran, final year B.E in Department of Computer Science and

Engineering, Rajalakshmi Engineering College, Chennai, India

and multi-owner resources to solve large-scale problems in

science, engineering, and commerce. Recent research on topics

has led to the emergence of a new paradigm known as Grid

computing. Grid computing [9] is a term referring to the

combination of computer resources from multiple

administrative domains to reach a common goal. Grid

computing is effective only when we schedule the resources

optimally. Here comes the concept of Grid Scheduling [9].

Scheduling the resources to the job is one of the main issues in

grid. The problems in grid scheduling are difficult to find the

completion time of the job, resource allocation and job

scheduling, resource management and fault tolerance, load

balancing, considering both user and application requirement,

problems in allocating I/O devices, satisfying deadline

requirement of job with minimum execution time and by using

efficient resource for processing[9]. A resource is something

that is required to carry out the assigned job. Resources can be

computers, storage space, instruments, software applications,

and data, all connected through the Internet [9]. A task is

defined as the atomic unit that is to be scheduled by the

scheduler and assigned to the selected resource. A job is set of

tasks that will be carried out on a set of resources [9]. A Local

Scheduler has the information about each and every resource

in its domain. A domain consists of set of nodes. A node is an

autonomous entity, which is composed of one or more multiple

resources. Grid Scheduler is responsible for scheduling and

managing resources at a single site or at a single cluster of

resources [10]. Generally, Grid Scheduler does not own the

resources as the Local Scheduler does. They do not have

control over the resources and also they do not have full

control over all the jobs submitted to it. They just make best

decisions to submit the job to the resource selected. The role

of the Grid information service (GIS) is to provide information

to Grid schedulers [1], [9]. GIS is responsible for collecting

and predicting the resource state information, such as CPU

capacities, memory size, network bandwidth, software

availabilities and load of a site in a particular period. This

information is provided by the various Local Schedulers in the

administrative domain. Three phases in the grid computing

are: resource discovery, resource selection, Job submission

[10]. In the first phase, the application and user requirement is

collected from the authenticated grid members. At the end of

authorization filtering step the user will have a list of machines

or resources to which he or she has access. To proceed in the

resource discovery, user must be able to specify some minimal

W

An Optimal Job Scheduling in Grid Using Cuckoo

Algorithm
ISSN 2047-3338

M. Prakash et al. 66

set of job requirement in order to filter the feasible set of

resources. It may include static as well as dynamic details. In

addition to the application requirement, user has to specify

their requirements such as deadline, cost etc. In second phase,

the resource that does not match the application requirement

will be filtered out. After that, according to the user

requirements the feasible resource must be selected from the

set of resources. In the third phase, once the resources are

chosen, application can be submitted to the resources [10].

Depending upon the application and its running time, user may

monitor the progress of their application. If a job is not making

sufficient progress, it may be rescheduled. After the job has

been successfully completed, the resources used by the job

have released and completed job will be given to the user.

The related work in Grid computing is discussed in section

II. Section IV describes the proposed architecture in Grid

environment. The Cuckoo Optimization algorithm which

schedules the resource optimally is proposed in section V. We

have concluded that this system will allocate the job optimally

by considering the deadline requirement of the users and also

the minimal execution time in section VI.

II. RELATED WORK

Yang Gaoa [1] proposes two models for predicting the

completion time of jobs at both the system-level and

application-level. The single service model predicts the

completion time of the job in a grid that provides one type of

service. The multiple services model predicts the completion

time of a job that runs in a Grid which offers multiple types of

services. They have developed two algorithms that use

predictive models to schedule the jobs. In application-level

scheduling, genetic algorithms are used to minimize the

average completion time of jobs through optimal job

allocation.

Resource allocation and scheduling is a fundamental issue in

achieving high performance on enterprise grid computing. I/O

is also a critical resource, hence the allocation of I/O resources

must be coordinated to allow the system to operate most

effectively. J.H. Abawajy [2] mainly focuses on I/O and

service-demands of parallel jobs in homogeneous and

heterogeneous systems with background workload. The

performance of the proposed scheduling policy is studied

under various system and workload parameters through

simulation. They have compared the performance of the

proposed policy with a static space–time sharing policy. The

results show that the proposed policy performs substantially

better than the static space–time sharing policy.

Effective task scheduling is essential for obtaining high

performance in heterogeneous distributed computing systems

(HeDCSs). However, finding an effective task schedule in

HeDCSs requires the consideration of both the heterogeneity

of processors and high interprocessor communication

overhead, which results from non-trivial data movement

between tasks scheduled on different processors. M.I. Daoud,

N. Kharma [3] have presented a new high-performance

scheduling algorithm, called the longest dynamic critical path

(LDCP) algorithm, for HeDCSs with a bounded number of

processors. The LDCP algorithm is a list-based scheduling

algorithm that uses a new attribute to efficiently select tasks

for scheduling in HeDCSs. The efficient selection of tasks

enables the LDCP algorithm to generate high-quality task

schedules in a heterogeneous computing environment. The

performance of the LDCP algorithm was compared with two

of the best existing scheduling algorithms for HeDCSs: the

HEFT and DLS algorithms.

Yajun Li,Yuhang Yanga, Maode Mab, Liang Zhoua,[4]

addresses the load balancing problem by presenting a hybrid

approach to the load balancing of sequential tasks under grid

computing environments. The main objective is to arrive at

task assignments that could achieve minimum execution time,

maximum node utilization and a well-balanced load across all

the nodes involved in a grid. A first-come-first-served and a

carefully designed genetic algorithm are selected as

representatives of both classes to work together to accomplish

the goal. The simulation results show that the algorithm can

achieve a better load balancing performance as compared to its

`pure' counterparts.

L. Mohammad Khanli et al. have presented QoS based

scheduling solutions in a specific architecture called Grid-JQA

[5]. This scheduling solution applies an aggregation formula

that is a combination of parameters together with weighting

factors to evaluate QoS. The Khanli's scheduling algorithm is

not practical and seems to be an unpractical mathematical

solution.

In the bidding model, the key challenge of resource

selection is that there is no global information system to

facilitate optimum decision-making; hence requesters can only

obtain partial information revealed by resource providers. To

address this problem, Chien-Min Wang [6] have proposed a

set of resource selection heuristics to minimize the turnaround

time in a non-reserved bidding-based Grid environment, while

considering the level of information about competing jobs

revealed by providers.

G.Kavitha [7], proposes an efficient method of resource

selection for distributed grid environments that is based on

execution trust of a resource and the Quality of Service

defined for the user. The resources selected are from the

trusted list of resources that satisfy the user requirements of

computation power for job execution with shorter response

time and budget constraints imposed by the user. The selection

strategy is based on user QOS parameters which improve the

performance of jobs submitted to the grid and the utilization of

resources that participate in the Grid. Simulation results show

that the proposed model selects the appropriate resources

among the available trustworthy resources with an improved

power – cost ratio and maximizes the reliability of the

resource.

Zhangzian [8] proposed a dynamic job scheduling algorithm

for heterogeneous computational grid of autonomous nodes.In

this algorithm, the communication time between nodes and

scheduler is overlapped with the computation time of the

nodes.so, the communication overhead can be little. The

scheduler would not allocate the job to the resources which is

already fully utilized.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 2, February 2012] 67

III. OUR NEW APPROACH

We propose the Cuckoo optimization algorithm for optimal

job allocation. In this system, we optimally schedule the jobs

with the resources satisfying the deadline requirements of the

user and also executing the job with the minimal execution

time and also with minimal cost, thus the user gets benefited.

IV. CUCKOO OPTIMIZATION ARCHITECTURE

In Fig 1, our System Architecture consists of GIS, Local

scheduler, Grid scheduler, Job Launching and Monitoring.

Grid users, who request the resources to the Grid Schedulers,

should be the authenticated members in Grid. Authentication

will be done by retrieving the information from the database.

They can use the resource only if they are the members of

Grid. Grid Schedulers will get the information from GIS.GIS

has the information about all the resources in different

administrative domains. Local Scheduler will provide

information about the resources in its domain. By using the

information available in the GIS, Grid Scheduler will map the

job to the selected resource. Once the binding of the job with

the resource has been done, then the job will be executed in

the allocated resource. In the job launching and monitoring

phase, the status of the job will be monitored and if there is

any system crash or power failure, then it will search for the

next suitable and best resource and allocate this resource to the

job and the job will be executed. There are three phases in

scheduling the jobs and executing it.

1. Resource discovery

2. Resource selection

3. Job launching and monitoring.

1. In Resource discovery, there are three sub-phases.

1.1. Authorization filtering

1.2. Application requirement definition

1.3. User requirement definition

1.1. The first step is to determine the set of resources

that the user has access to. Without authorization,

job will not run on the resources. At the end of this

step, user will have set of resources to which he or

she has access.

1.2. To proceed in resource discovery, user must be

able to specify some minimal set of job

requirement in order to filter the feasible set of

resources. It may include static details and the

dynamic details.

1.3. In addition to the application requirement

definition, user has to specify their own

requirements such as deadline and cost.

2. In Resource Selection, there are two sub-phases.

2.1. Minimal requirement filtering

2.2. System selection

2.1. The first step is to determine the set of resources

which satisfy the minimum requirements of the users.

Thus in this step, it filters out the resources that do

not satisfy the minimal job requirement.

Fig. 1. Cuckoo Optimization Architecture for Job Scheduling

2.2. In the second step, our Cuckoo algorithm plays

an important role. According to the user

requirements, feasible resources must be selected

from the filtered set of resources.

3. Job Launching and Monitoring, there are three sub-

phases.

 3.1. Job Submission

 3.2. Job Monitoring

 3.3. Clean-up tasks

3.1. The first step is job submission. Once the

resources are chosen, application can be submitted to the

resources.

3.2. The next step is to job monitoring. In this phase,

depending upon the running time and the application,

user may monitor the progress of their application. If a

job submitted is not making a sufficient progress, it has to

be rescheduled. Such rescheduling is harder on a Grid

system than on a single machine. For this purpose, we

have developed additional primitives for interactions

between local scheduler and grid scheduler.

3.3. The final step is cleanup tasks. After a job is

completed, user may need to retrieve files from that

resource in order to do data analysis on the results,

remove temporary settings and so forth.

V. CUCKOO OPTIMISATION ALGORITHM

Cuckoo Search (CS) is an optimization algorithm developed

by Xin-she Yang and Suash Deb in 2009. It was inspired by

the obligate brood parasitism of some cuckoo species by

laying their eggs in the nests of other host birds (of other

species). Some host birds can engage direct conflict with the

intruding cuckoos. For example, if a host bird discovers the

eggs are not their own, it will either throw these alien eggs

away or simply abandon its nest and build a new nest

elsewhere. Here we map nests as the resources, cuckoo as Grid

Broker, cuckoo egg as the newly arrived job and the host’s

eggs are considered as the jobs in the queue and the

characteristics of the eggs are the constraints. If the newly

M. Prakash et al. 68

arrived job satisfies the constraints of the jobs in the resources

approximately, then the job is chosen for execution. Else the

job is discarded from that resource and some other optimal

resource is chosen for that job.

TABLE I: NOTATIONS USED FOR AN OPTIMAL SCHEDULING USING CUCKOO ALGORITHM

Symbol Description
Rj Resource in the grid j=1,2,…m

Ti Submitted task in the grid i=1,2,…..n

Di
ECi
Memi
Rek

Ti

Cj
OCj
Eti,j
UCj
wti,j
cti,j
wj
qeti,j
retj
cetj
costj
mini,j

Deadline of the task Ti

Expected cost of task Ti

Memory requirement of task Ti

Resource requirement of task Ti

CPU capability of resource Rj

Original CPU capability of Rj

Estimated execution time of Ti on resource Rj

Utilized CPU capability of Rj

Estimated waiting time of Ti on resource Rj

Estimated completion time of Ti on resource Rj

Workload of resource Rj

Estimated execution time of Ti in queue of resource Rj

Remaining execution time to complete task in Rj

Completed execution time of the running task in Rj

Cost of the utilized resource

Amount of time task Ti utilizes Rj

 Cuckoo optimization algorithm is based on three simple

principles that emerge from the cuckoo’s strategy:

* First, each cuckoo lays one egg (a design solution) at a

time, and dumps it in a randomly chosen nest.

* Second, the best nests with a high quality egg (better

solution) carry over to the next generation.

* Third, the number of available host nests is fixed, and a

host and there is a finite probability of the cuckoo in the nest

being discovered.

1. Grid Broker will consider one job at a time and will map

the job to the optimal resource.

2. The best resource which satisfies the requirements of the

users gets selected and the job is submitted to that resource.

3. Once the job is allocated to the resource, it is fixed.

The grid user specifies the job Ti, deadline Di of the job to

be completed, cost limit ECi the user can pay, memory

requirement Memi of the job and the application requirement

Rek
T
 for the job Ti. First the task Ti has to be sorted according

to the deadline requirement Di of the job. The information

about the available resource in the grid has to be collected

from GIS. For each resource Ri, We have to check whether

memory requirement Memi of the task Ti is satisfied by

resource memory Ri. If it satisfies, the resource Ri has to be

added to the list Li. If the list is not empty, we have to

calculate the original capability OCj, utilized capability UCj

and completion time Cti,j of the job Ti . The original capability

of the CPU OCj has calculated using MIPS. The utilized

capability of the CPU is calculated using eq. (1):

 UCj=UCj/eti,j (1)

for all the jobs in the queue of Rj.

The difference of estimated execution time eti,j and the

completed execution time cetj is computed using eq. (2):

RETj= eti,j- cetj (2)

Initialize the population

Ti {T1,T2,…..,Tm}

 Di {D1,D2,…..,Dm}

ECi {EC1,EC2,…..,ECm}

Memi {Mem1,Mem2,…..,Memm}

Rek
T
 { Re1

T
 , Re2

T
 ,….., Rem

T
 }

Qi ← Sort Qi of job Ti by Di

for ¥ Rj do

 if Memi<Rimemory

 Add Ri to the list Li

end-for

while Li≠empty do

 calculate

 Oj using MIPS

 while k<wj do

 UCj=UCj/eti,j

 end while

 Cj=OCj-UCj

 eti,j=wj/Cj

 wj-1

 wti,j=∑ eti,j+RETj

 i=1

 RETj= eti,j- cetj

 cetj=current time-entry time of job into CPU

 cti,j= wti,j+ eti,j
end while

while Li≠empty do

 Li ← Sort Li of Ri by wti,j
if Cj>=OCj/2 && cti,j<Di then

 n

 costj=∑ nm*minm*cost

 m=1

 if wti,j> eti,j

 tj= wti,j- eti,j

 if tj<= eti,j/4

 costj=costj*95/100

 if tj<= eti,j/4 && tj>= eti,j/2

 costj=costj*90/100

 end if

 if costj<=ECi,j

 select Ri\

 end if

 end if

 Choose the resource with minimum cost for job

execution

end while

The execution time of the job in execution cetj can be

calculated by finding difference between the current time and

entry time of job into CPU.

 cet,j = Current time - Entry time of job into CPU (3)

The completion time of the job is sum of waiting time wti,j
and execution time eti,j

 cti,j= wti,j+ eti,j (4)

After calculating the completion time and capability of CPU,

we have to sort the resource Rj based on the waiting time

International Journal of Computer Science and Telecommunications [Volume 3, Issue 2, February 2012] 69

If the capability Cj is greater than half of the original

capability and completion time cti,j is less than the deadline

then calculate the cost using the formula
 n

 costj=∑ nm*minm*costm (5)
 m=1

If the waiting time of the job wti,j greater than the execution

time of the job eti,j cost of the resource will be reduced based

upon the certain condition. If the cost of the resource is less

than or equal to the expected cost then select the resource

which is of minimum cost for job execution.

VI. CONCLUSION

Cuckoo optimization approach selects the optimal resource

from the set of available resources. The main issue in existing

computational grid resource allocation is to discover suitable

resources and to schedule separate tasks of an application on

those resource in such a way to satisfy deadline requirement of

the job with minimum execution time and cost. Thus the

cuckoo optimization algorithm for optimal job allocation of

resources on each node. This system will allocate the job

optimally by considering the deadline requirement of the users

and also the minimal execution time.

REFERENCES

[1] Yang Gaoa,, Hongqiang Rongb, Joshua Zhexue Huangc, ”An

Adaptive Grid Job Scheduling With Genetic Algorithms”,

Future Generation Computer Systems, 21,2005,pp 151–161.

[2] J.H. Abawajy, “An Adaptive Hierarchial Scheduling Policy For

Enterprise Grid Computing”, Journal of Network and

Computer Applications ,32 ,2009,pp 770–779

[3] M.I. Daoud, N. Kharma , “A High Performance Algorithm For

Static Task Scheduling In Heterogeneous Distributed

Computing Systems”, J. Parallel Distrib. Compu,. 68 ,2008, pp

399 – 409

[4] Yajun Li,Yuhang Yanga, Maode Mab, Liang Zhoua, ”A Hybrid

Load Balancing Strategy Of Sequencial Task Of Grid

Computing Enviornment”, Future Generation Computer

Systems 25 ,2009 ,pp 819_828

[5] L.Mohamad Khalini,M.Analoui, “An approach to grid resource

selection and fault management based on ECA rules”, Future

Generation Computer Systems 24 ,2008,pp 296–316

[6] Zhang jian and Xinda Lu,”A Dynamic Job Scheduling

Algorithm for Computational Grid”,Department of Computer

Science and Engg. Shanghai Jiaotong University, Shanghai

200030,China

[7] G.Kavitha and V.Sankaranarayanan,” Resource Selection in

Computational Grid Based on User QoS and Trust”, IJCSNS

International Journal of Computer Science and Network

Security, VOL.11 No.3, March 2011,pp 214-221

[8] Chien-Min Wanga, Hsi-Min Chenb, Chun-Chen Hsuc,

Jonathan Lee b,” Dynamic resource selection heuristics for a

non-reserved bidding-based Grid environment”, Future

Generation Computer Systems, 7 August 2009, 26 (2010)

183_197.

[9] Fangpeng Dong and Selim G. Akl,” Scheduling Algorithms for

Grid Computing: State of the Art and Open Problems”, School

of Computing, Queen’s University Kingston, Ontario January

2006, No. 2006-504

[10] Jennifer M. Schopf, “Ten actions when Grid Scheduling”,

Mathematics and Computer Science Division, Argonne

National Laboratory.

M. Prakash received the B.E Degree in Computer Science and

Engineering from University of Madras and M.E Degree from

Sathyabama University, Chennai, India. He is pursing PhD in Faculty

of Computer Science Engineering, Jawaharlal Nehru Technological

University, Hyderabad, Andhra Pradesh, India. Presently he is

working as a Assistant Professor in the Department of Computer

Science and Engineering, Rajalakshmi Engineering College,

Chennai, India. His research area includes Grid Computing and

Distributed Computing. He published around 10 papers in National

and International conferences and journals. He is the life member in

professional society of ISTE and CSI.

R. Saranya pursuing final year B.E Computer Science and

Engineering in Rajalakshmi Engineering College, Chennai. She is

member of IEEE. She has done project in “The Great Mind

Challenge” conducted by IBM, (saranyarajendren79@gmail.com)

K. Rukmani Jothi pursuing final year B.E Computer Science and

Engineering in Rajalakshmi Engineering College, Chennai. She is

IBM Tivoli certified.

A. Vigneshwaran pursuing final year B.E Computer Science and

Engineering in Rajalakshmi Engineering College, Chennai. His area

of interest includes Grid Computing.

