
International Journal of Computer Science and Telecommunications [Volume 1, Issue 1, November 2010] 13

Journal Homepage: www.ijcst.org

M. A. Naeem
1
 and Rizwan Khan

2

1,2
Department of Computer Science, The University of Auckland, New Zealand

Abstract— In industry firmware development for USB devices

is very demanding. The objective of this research work is to

develop a framework for writing and testing the firmware for

USB devices even before the devices are manufactured. Faulty

hardware is often a bottleneck in firmware development and time

is often lost due to this dilemma. There is need for a framework

that could reliably test the firmware without the need of actual

hardware. Minimizing the time to sell a product is the key to

success in today’s growing market. With the development of this

framework, hardware and software development can be done in

parallel. Such a frame work can be developed on any operating

system like windows, Linux etc. In this research work, we have

selected Linux operating system for the implementation of

Virtual Device Frame work due to its open source nature.

Index Terms— Framework, USB, Linux, Hardware and

Testing

I. INTRODUCTION

HE Universal Serial Bus (USB) is a fast and flexible

interface for connecting devices to computers. Every new

PC has at least a couple of USB ports. The interface is

versatile enough to use with standard peripherals like

keyboards and disk drives as well as more specialized devices,

including one-of-a-kind designs. In short, USB is very

different from the legacy interfaces it's replacing. A USB

device [8] may use any of four transfer types and three speeds.

On attaching to a PC, a device must respond to a series of

requests that enable the PC to learn about the device and

establish communications with it. In the PC, every device

must have a low-level driver to manage communications

between applications and the system's USB drivers [9].

Developing a USB device and the software that communicates

with it requires knowing something about how USB works

and how the PC's operating system implements the interface.

USB communications takes place between the host and

endpoints located in the peripherals. An endpoint is a uniquely

addressable portion of the peripheral that is the source or

receiver of data. Four bits define the device's endpoint

address; codes also indicate transfer direction and whether the

transaction is a "control" transfer. Endpoint 0 is reserved for

control transfers, leaving up to 15 bi-directional destinations

or sources of data within each device [1].

The idea of endpoints leads to an important concept in USB

transactions, that of the pipe. All transfers occur through

virtual pipes that connect the peripheral's endpoints with the

host. When establishing communications with the peripheral,

each endpoint returns a descriptor, a data structure that tells

the host about the endpoint's configuration and expectations.

Descriptors include transfer type, max size of data packets,

perhaps the interval for data transfers, and in some cases, the

bandwidth needed. Given this data, the host establishes

connections to the endpoints through virtual pipes, which even

have a size (bandwidth), to make them analogous to household

plumbing [3].

USB supports four data transfer types: control, isochronous,

bulk, and interrupt.

Control transfers exchange configuration, setup, and

command information between the device and the host. CRCs

check the data and initiate retransmissions when needed to

guarantee the correctness of these packets.

Bulk transfers move large amounts of data when timely

delivery isn't critical. Typical applications include printers and

scanners. Bulk transfers are fillers, claiming unused USB

bandwidth when nothing more important is going on. CRCs

protect these packets.

Finally, isochronous transfers handle streaming data like

that from an audio or video device. It is time sensitive

information so, within limitations, it has guaranteed access to

the USB bus. No error checking occurs so the system must

tolerate occasional scrambled bytes [6], [7].

Fig. 1. USB Hub Architecture

T

A Frame Work for Virtual USB Devices under Linux

Environment

 ISSN 2047-3338

E. Dar et al. 14

In industry firmware development for USB devices is very

demanding. The objective of this project is to develop a

framework for writing and testing the firmware for USB

devices even before the devices are manufactured.

 Faulty hardware is often a bottleneck in firmware

development and time is often lost due to this dilemma. There

is need for a framework that could reliably test the firmware

without the need of actual hardware. Time is money.

Minimizing the time to sell a product is the key to success in

today’s growing market. With the development of this a

framework, hardware and software development can be done

in parallel.

 Such a frame work can be developed on any operating

system like windows, Linux [5] etc. In this research we have

selected Linux operating system [4] for the implementation of

Virtual Device Frame work. The main reason for this selection

is the open source nature of Linux. Also there are many

classes for USB devices. One of them is Mass Storage class

[12]. Currently, the scope of project is limited to USB Mass

Storage Class only.

The rest of the paper is organized as: In section II, we

discussed the background history and related work of the

research. In section III, we presented our proposed system

design and architecture. We conclude our work in section IV.

II. BACKGROUND

A. The USB Mass Storage Class

This section gives an overview of the USB Mass Storage

Class [12] specification overview. How mass storage devices

behave on the USB bus is the subject of this and other USB

Mass Storage Class specifications. In addition to this

Overview specification, several other USB Mass Storage

Class specifications are supported by the USB Mass Storage

Class Working Group (CWG). The titles of these

specifications are:

• USB Mass Storage Class Control/Bulk/Interrupt (CBI)

Transport

• USB Mass Storage Class Bulk-Only Transport

• USB Mass Storage Class UFI Command Specification

• USB Mass Storage Class Bootability Specification

• USB Mass Storage Class Compliance Test

Specification

• The USB Mass Storage Class Control/Bulk/Interrupt

CBI Transport specification is approved for use only with

full-speed floppy disk drives. CBI shall not be used in high-

speed capable devices, or in devices other than floppy disk

drives. Usage of CBI for any new design is discouraged.

Note: The bootability and Compliance Test specifications are

still under development, and are not yet publicly available.

1). Specification Relationships

The CBI and Bulk-Only specifications are each intended to

be stand-alone documents for the USB Mass Storage class,

enabling development of a USB Mass Storage compliant

device. A device manufacturer may choose to implement both

CBI and Bulk-Only, but shall follow each specification as

applicable. Booting an operating system from a USB Mass

Fig. 2. SubClass Codes Mapped to Command Block Specifications

Storage Class device requires no special considerations with

regard to Mass Storage Class support. Either CBI or Bulk-

Only devices may be bootable. Bootability may, however,

require other considerations such as particular types of media

formatting, etc. Such considerations are hardware- or

operating system dependent, and are beyond the scope of the

Mass Storage Class specifications.

2). Mass Storage Subclass

The Interface Descriptor of a USB Mass Storage Class

(Fig. 2) device includes a bInterfaceSubClass field. This field

denotes the industry-standard protocol transported by a Mass

Storage Class interface. The value of the bInterfaceSubClass

field shall be set to one of the Subclass codes as shown in the

following table. Note that the Subclass code values used in

the bInterfaceSubClass field specify the industry-standard

specification that defines transport protocols and command

code systems transported by the interface; these Subclass

codes do not specify a type of storage device (such as a

CD-ROM or floppy disk drive).

B. Linux USB Architecture

In Linux there exists a subsystem called ``The USB Core''

with a specific API to support USB devices and host

controllers. Its purpose is to abstract all hardware or device

dependent parts by defining a set of data structures, macros

and functions. The USB core contains routines common to all

USB device drivers and host controller drivers. These

functions can be grouped into an upper and a lower API layer.

There exists an API for USB device drivers and another one

for host controllers. The following section concentrates on the

USB device driver layer, because the development for host

controller drivers is already finished. This section will give an

overview of the USB framework by explaining entry points

and the usage of API functions. The Fig. 3 shows the

architecture of Linux USB [2], [5], [14].

International Journal of Computer Science and Telecommunications [Volume 1, Issue 1, November 2011] 15

Fig. 3. Linux USB Architecture

1). Framework Data Structures

USB devices drivers are registered and deregistered at the

subsystem. A driver must register 2 entry points and its name.

For specific USB devices (which are not suitable to be

registered at any other subsystem) a driver may register a

couple of file operations and a minor number. In this case the

specified minor number and the 15 following numbers are

assigned to the driver. This makes it possible to serve up to 16

similar USB devices by one driver. The major number of all

USB devices is 180.

Fig. 4. Framework Data structures

- name: Usually the name of the module.

- probe: The entry point of the probe function.

- disconnect: The entry point of the disconnect function.

- driver_list: For internal use of the subsystem - initialize to

{NULL,NULL}

- fops: The usual list of file operations for a driver

- minor: The base minor number assigned to this device (the

value has to be a multiple of 16)

- serialize:

- ioctl:

- id_table:

III. PROPOSED SYSTEM DESIGN

A. File-backed Storage

The File-backed Storage (FS) provides support for the USB

Mass Storage class. It can appear to a host as a set of up to 8

SCSI disk drives (called Logical UNits or LUNs), although

most of the time a single LUN is all you will need. The

information stored for each LUN must be maintained by the

gadget somewhere, either in a normal file or in a block device

such as a disk partition or even a ramdisk.

This file or block device is called the backing storage for the

gadget, and tell FSG where the backing storage is when gadget

driver is loaded:

bash# modprobe g_file_storage file=/root/data/backing_file

This command tells FSG to provide a single LUN with

backing storage maintained in /root/data/backing_file. If two

LUNs are required, where the second LUN used /dev/hda7 as

its backing storage, you would do:

bash# modprobe g_file_storage

file=/root/data/backing_file,/dev/hda7

Under Linux 2.6 [4], [15]; if "removable=y" is added to the

modprobe line then FSG will act like a device with removable

media and allow to specify the backing storage using sysfs

attributes. In fact, by doing this the "file=..." parameter can be

omited entirely. The gadget will resemble a ZIP drive with no

cartridge inserted until sysfs is used to specify some backing

storage.

AN IMPORTANT WARNING! While FSG is running and the

gadget is connected to a USB host, that USB host will use the

backing storage as a private disk drive. It will not expect to see

any changes in the backing storage other than the ones it

makes. Extraneous changes are liable to corrupt the filesystem

and may even crash the host. Only one system (normally, the

USB host) may write to the backing storage, and if one system

is writing that data, no other should be reading it. The only

safe way to share the backing storage between the host and the

gadget's operating system at the same time is to make it read-

only on both sides.

B. Creating A Backing Storage File

Backing storage requires some preparation before FSG can

use it. To start with, if the backing storage is a regular file then

the file must be created beforehand, with its full desired size.

(FSG won't create a backing storage file and won't change the

size of an existing file.) In the example above, if

/root/data/backing_file is wanted to represent a 64MB drive

then it should be created using a command something like

this:

bash# dd bs=1M count=64 if=/dev/zero

of=/root/data/backing_file

64+0 records in

64+0 records out

E. Dar et al. 16

This has to be done before one can load g_file_storage, but

it only has to be done once. If the backing storage is a block

device or disk partition such as /dev/hda7 then one don't have

to create it beforehand, because it will already exist.

C. Partitioning the Backing Storage

However, creating the backing storage isn't enough. It's like

having a raw disk drive; which needs partition and file system

before using it. (Strictly speaking there is no need to partition

it. The entire drive can be treated as a single large device, like

a floppy disk. This will be confusing, though, and some

versions of Windows won't work with an unpartitioned USB

drive). To partition the backing storage a partition table has to

be created by using the fdisk program. Here's an example

showing how to do it.

The example assumes that gadget will be used with a

Windows host. It's a little tricky because fdisk needs help

when working with something other than an actual device.

Begin by starting up fdisk and telling it the name of backing

storage. A message something like this: bash# fdisk

/root/data/backing_file will be received. Device contains

neither a valid DOS partition table, nor Sun or SGI disklabel.

Build a new DOS disklabel. Changes will remain in memory

only, until you decide to write them. After that, of course, the

previous content won't be recoverable.

D. Heads, Sectors and Cylinders

As fdisk needs to set the heads, sectors, and cylinders

values. (Some versions only need to set the number of

cylinders, but they're wrong. It is baecause of miscalculation

of the size of backing file; as default values are used and

ignoring the actual file size.) The numbers are somewhat

arbitrary; the scheme shown here works good. Give the "x"

(eXpert or eXtra) command: Command (m for help): x

Then number of sectors/track will be set. g_file_storage uses

a sector size of 512 bytes, so 8 sectors/track will give 4096

bytes per track. This is good because it matches the size of a

memory page (on a 32-bit processor). Expert command (m for

help): s

Number of sectors (1-63): 8

Warning: setting sector offset for DOS compatiblity

Next is to set the number of heads (or tracks/cylinder). With 4

KB per track, 16 heads will gives a total of 64 KB per

cylinder, which is convenient since the size of the backing file

is 64 MB. Expert command (m for help): h

Number of heads (1-256): 16

Finally the number of cylinders will be set. It's important

that the total size should match the actual size of the backing

file. Since there are 64 KB per cylinder and 64 MB total, 1024

cylinders are needed. Expert command (m for help): c

Number of cylinders (1-131071): 1024

Now return to the normal menu (the "r" command): Expert

command (m for help): r

E. Creating a Primary Partition

Create a new primary partition ("n" for new). Make it

number 1. The defaults for the starting and ending cylinder are

perfect because they will make the partition occupy the entire

backing file, so press Enter when asked for the First and Last

cylinder:

Command (m for help): n

Command action

Extended

Primary partition (1-4)

Partition number (1-4): 1

First cylinder (1-1024, default 1):

Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-1024, default

1024):

Using default value 1024

The new partition is created by default as a Linux partition [4].

Since you want to use the gadget with a Windows host, you

should change the partition type (the "t" command) to FAT32

(code "b"): Command (m for help): t

Partition number (1-4): 1

Hex code (type L to list codes): b

Changed system type of partition 1 to b (Win95 FAT32)

Print out ("p") the new partition table to be sure everything's

correct: Command (m for help):

Disk /root/data/backing_file: 16 heads, 8 sectors, 1024

cylinders

Units = cylinders of 128 * 512 bytes

 Device Boot Start End Blocks Id
System

/root/data/backing_file1 1 1024 65532 b

Win95 FAT32

Finally write out ("w") the partition table to the backing

storage:

Command (m for help): w

The partition table has been altered! Calling ioctl() to re-

read partition table. Re-read table failed with error 25:

Inappropriate ioctl for device. Reboot system to ensure the

partition table is updated.

WARNING: If you have created or modified any DOS 6.x

partitions, please see the fdisk manual page for additional

information.

F. Adding a File System

At this point a new partition has been created but it doesn't

yet contain a filesystem. The easiest way to add a filesystem is

to load g_file_storage, connect the gadget to a USB host, and

use the host to do the work. With a Linux host [13] run

mkdosfs; with a Windows host. Or double-click on the drive's

icon in the "My Computer" window.

G. Accessing the Backing Storage from the Gadget

It is possible to manipulate the data in the backing storage

from the gadget (even to add the filesystem). Don't do this

while the gadget is connected to a USB host! The key is to use

the loop device driver with the "-o" (offset) option for the

losetup program. For this to work, determine the partition's

offset. Following the scheme given above would result in

4096. If not, one can use fdisk to find the correct offset value:

fdisk -lu /root/data/backing_file One must set cylinders.

This can also be done from the extra functions menu:

Disk data: 0 MB, 0 bytes

16 heads, 8 sectors/track, 0 cylinders, total 0 sectors

International Journal of Computer Science and Telecommunications [Volume 1, Issue 1, November 2011] 17

Units = sectors of 1 * 512 = 512 bytes

 Device Boot Start End Blocks Id
System

 /root/data/backing_file1 8 8191 4092 b

Win95 FAT32

Ignore the data at the top and concentrate on the table at the

bottom. The required number is want is the value in the "Start"

column. It gives the offset in sectors; to convert to bytes and

multiply by 512. So we see that the offset is 8 x 512 = 4096

bytes.

Now use the losetup program to set up the loop device

driver with the proper offset:

losetup -o 4096 /dev/loop0 /root/data/backing_file

Now /dev/loop0 is mapped to the partition within the

backing storage. Create a file system on it: # mkdosfs

/dev/loop0 and then one can mount it: # mount -t vfat

/dev/loop0 /mnt/loop

Now you can transfer files back and forth. When this is done,

make sure to unmount and detach the loop device: # umount

/dev/loop0.

losetup -d /dev/loop0

H. Appearing as Virtual USB Device

Mounting the File system will let the mass storage device to

appear virtually without attaching any physical hardware.

IV. CONCLUSIONS AND FUTURE ENHANCEMENTS

We have shown that virtual USB concept work well with

mass storage class. This will prove itself a great testing

environment as far as testing of USB drivers is concerned.

Mass storage class was tested virtually using this framework

and it proved to be a good working environment even when

the actual device is under development phase. USB Host side

drivers can be developed without the need of any real device.

This approach can also help in testing mass storage devices of

different capacities virtually.

• Future Enhancements

Here are a few suggestions about the future enhancements:

� Implementing Other USB classes for the same Frame

work: Currently, the scope of project restricted to

Mass storage class only. This can be extended to

other USB classes. There are other USB classes like,

Audio, Printer, Video, Communication classes etc.

Using this frame work; similar to virtual mass

storage; virtual printer, video, communication classes

can be implemented.

� Exactly emulating any USB device: This frame work

can be extended to emulate any ‘real’ device. For

example some one wants that virtual mass storage

should behave exactly like Kingston 512MB device,

this is also possible with the help of proposed

framework. But definitely it requires more changes in

existing framework to include this functionality.

REFERENCES

[1]. Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and

Philips. Universal Serial Bus Specification - Revision 2.0,

April 2000. http://www.usb.org.

[2]. Detlef Fliegl. Programming Guide for Linux USB Device

Drivers - Revision 1.32, 2000. http://usb.cs.tum.edu/usbdoc

[3]. SystemSoft and Intel. Universal Serial Bus Common Class

Specification – Revision 1.0, December 1997.

http://www.usb.org/developers/devclass_docs.

[4]. Linux kernel sources. http://www.kernel.org/.

[5]. Linux USB sources http://www.linux-usb.org/

[6]. Intel. Universal Host Controller Interface (UHCI) Design

Guide - Revision 1.1, March 1996.

http://www.usb.org/developers/docs/

[7]. Intel. Enhanced Host Controller Interface for Universal Serial

Bus - Revision 1.0, March 2002.

http://www.usb.org/developers/docs/

[8]. Intel USB source http://www.intel.com/technology/usb/

[9]. Wikipedia USB source http://en.wikipedia.org/wiki/USB.

[10]. Wiki USB source,

http://www.en.wikipedia.org/wiki/USB_flash_drive/

[11]. Linux USB source, www.linux-usb.org/USB-guide/x498.html

[12]. Mass Storage USB source www.gentoo-

wiki.com/HOWTO_USB_Mass_Storage_Device

[13]. Linux USB source,

www.linux.about.com/od/linux101/a/desktop04c.htm.

[14]. Linux USB sources,

www.gsi.de/informationen/wti/library/scientificreport2006/PA

PERS/INSTRUMENTS-METHODS-15.pdf

[15]. Linux USB source http://www.linux-usb.org/.

